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Propagation characteristics of an electromagnetic
(EM) wave inside a waveguide are greatly modified by
the introduction of dielectrics into the guide.
Frequency of cutoff, attenuation, and power flow
distribution are all properties of the EM wave that
are highly dependent on the physical structure and
composition within the guide. Shielding applications
take advantage of the large amount of attenuation
provided by a waveguide when the incident EM wave
has a frequency lower than the cutoff frequency of
the waveguide. In practice, small sections of
waveguides are inserted through the metal walls of a
shielded enclosure to construct an air passage that
does not compromise the shielding effectiveness of the
shelter. Typically, however, other fluids and materials
besides air must be transferred inside the enclosure.
Therefore, hoses are sometimes inserted through these
waveguides, which can reduce the shielding provided
by the waveguide above and below cutoff.

This work has investigated the EM propagation
through these loaded waveguides structures, placing . o
special emphasis on wave attenuation. The study was LN
divided into two problems: the modal coupling and Tl
excitation of a finite inhomogeneous guide.

Solutions to the radially inhomogeneous infinite
circular waveguides have been obtained numerically
from an exact theoretical development beginning with
first principles. These inhomogeneous waveguides are . .
layered with circular, concentric annuli, possibly e
having complex constitutive parameters. The modes
that were found to exist in these waveguides are
hybrid, meaning that they have both axial E- and H-
fields. The foundations and numerical solutions
developed were verified experimentally.
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inside the enclosure.

Propagation characteristics of an electromagnetic (EM) wave inside a waveguide are
greatly modified by the introduction of dielectrics into the guide.
attenuation, and power flow distribution are all properties of the EM wave that are highly
dependent on the physical structure and composition within the guide. Shielding applications
take advantage of the large amount of attenuation provided by a waveguide when the
incident EM wave has a frequency lower than the cutoff frequency of the waveguide. In
practice, small sections of waveguides are inserted through the metal walls of a shielded
enclosure lo construct an air passage that does not compromise the shielding effectiveness of
the shelter. Typically, however, other fluids and materials besides air must be transferred
Therefore, hoscs are sometimes inserted throurh these waveguides,
which can reduce the shiclding provided by the waveguide above an i below cutoff.
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CHAPTER 1
INTRODUCTION

The propagation characteristics of an electromagnetic (EM) wave inside a
waveguide are greatly modified by the introduction of dielectrics into the guide. The
frequency of cutoff (where the wave begins propagation), the attenuation and the
distribution of power flow are all properties of the EM wave that are highly dependent on
the physical structure and composition within the guide. Shielding applications take
advantage of the large amount of attenuation provided by a waveguide when the incident
EM wave has a frequency lower than the cutoff frequency of the wavegu:de. In practice,
small sections of waveguides are inserted through the metal walls of a shielded enclosure to
construct an air passage which does not compromise the shielding effectiveness of the
shelter. Typically, however, other fluids and materials besides air must be transferred
inside the enclosure. To accomplish this, hoses are occasionally inserted through these
waveguides; hence, the shielding provided by the waveguide above and below cutoff can
be reduced. It is the aim of this work to investigate the EM propagation through these
loaded waveguide structures placing special emphasis on the attenuation of the wave.

This loaded waveguide problem may be separated into two main subproblems, (i)
the modal coupling and excitation of a finite inhomogeneous guide, and (ii) the modal
solutions and wave properties for an infinite inhomogeneous guide. These two parts are
related by the fact that once the excited modes are identified in thc finite guide, the
attenuation and other attributes of the wave can be calculated using the infinite guide
solutions. Identifying the excited modes is a difficult task theoretically and is not
considered in this work. Experimentally, however, a large number of measurements were
performed on such an arrangement. Instead, this work emphasizes the wave properties not

directly dependent on the source excitation, but concentrates more on the inhomogeneous




waveguide penetration itself and the characteristic properties of the geometry and loading
materials.

As a first approximation to the theoretical analysis of this problem, the waveguide
structure is modelled as an infinite waveguide containing layered concentric dielectrics
forming homogeneous annuli. In this vein, there has been much work done for the two
concentric dielectric problem in which a dielectric rod is inserted inside the guide.
Pincherle [1] was one of the first to consider this two-dielectric guide and found solutions
for both the rectangular and circular guides. For the iuter. only azimuthally symmerric
modes were considered. The two papers by Clarricoats (2] provide a more complete,
authoritative exposition on the two-dielectric guide and they also build the stage from which
many papers over the next decade (1960's) on the topic of the rod-insert waveguide were
set. Recently, a number of papers concerning the two-dielectric insert waveguide and
resonators have appeared by Zaki and Ata [3} and Zaki and Chen (4], [5]. In these papers,
more emphasis is placed on the ncnazimuthally symmetric modes and their corresponding
field patterns and resonant frequencies for rcd-loaded cavities of similar cross sections.
Until recently, very little if anything has been published for the cases in which more than
two dielectrics fill the waveguide. Bruno and Fridges [6] consider a variant of the three-
dielectric problem— that of a two-dielectric lossless rod guide. Chou and Lee [7] analyze
the case of a perfect electrically conducting (pec) waveguide with muldple coatings having
perhaps complex permeabilities. This is related to the problem at hand, but here, however.
lossy dielectric fillings rather than lossy magnetic coatings are relevant. In this work, the
theoretical formulation and subsequent numerical solutions for the waveguide filled with
any number of concentric, perhaps lossy, dielectrics will be presented. Both electric and
magnetic losses are allowed or any combination of i 's and €,'s; however, only electrical
losses will be considered here.

Solutions to this loaded waveguide problem hinge on finding roots of a

characteristic equation which is derived from first principles. The roots of this equation are




the axial wavenumbers, k,, for a given azimuthal variation. There are an infinite number of
these roots for each azimuthal variation and developing a method by which a root can be
assigned to a mode is a large part of the total solution process. One method of identifying
roots in the inhomogeneous case, and one which is used extensively in this work, is to
"trace” the root in the complex plane as some parameter is continuously varied. The
starting point for this tracing process is chosen where the mode type and root are known,
usually the homogeneous guide case, and then the k, value is continuously computed while
some physical parameter is incremented, such as the radius of the dielecmics, the
constitutive parameters of the dielectrics, the frequency, or perhaps the amount of loss.
This tracing process becomes especially important, and also difficult, when there is much
loss, since the roots are then located somewhere in the total complex plane. In this work,
many examples will be given when very high dielectric losses are present, from which the
attenuation and axial power flow, among other things, will be examined. In particular, as
discussed at the beginning of this chapter, the three-layered, dielectrically-loaded
waveguide is very important in this study. An in-depth investigation into the attenuation
for this inhomogeneous guide will be performed in Chapter 4.

During this k, tracing process, for reasons to be discussed throughout this thesis
beginning in Section 3.3, backward-wave regions may develop for these dielectrically-
loaded waveguides. A backward-wave region is one in which the wavefronts are traveling
in the opposite direction to the net power flow. ("Net” power flow is a necessary statement
since it will also be shown that the power flow can have differing signs in different
dielectric annuli.) Clarricoats and Waldron (8] were the first to predict the existence of
such a phenomenon in the two-dielectric circular guide. This topic was extensively studied
after that with Clarricoats publishing two excellent papers on the topic (9], [10].
Experimental verification for the existence of these backward waves, in addition to the
theoretical development, was carried out by Clarricoats and Birtles [11] with a resonant

cavity technique and by Clarricoats and Slinn [12] using a slot in a loaded waveguide.




Both techniques showed very good agreement with the theoretically expected values. An
extensive list of applications for the rod-loaded waveguide backward-wave structure was
discussed by Waldron [13]. [n this thesis, the existence of these backward waves will be
verified for the two-dielectric case and also intensively studied in the three-dielectric guide.

A new modal designation scheme for backward-wave modes will be introduced,
beginning in Section 3.5, that is more consistent with other properties of the wave, in
addidon to the k,, such as net power flow, boundedricss of the wave and continuity in the
k, trace. This new scheme relies on the introduction of a small amount of loss into the
dielectrics in order that the proper k, root can be chosen. Until the recent advent of
sophisticated Bessel function computer subroutines which can compute values for complex
arguments, this could not be done very easily. Along with this new modal designation
scheme comes a slightly revised look at the cutoff frequency for a mode. The issue at hand
concerning this topic is whether k, equals zero for cutoff, the phase and group velocities
are infinite and zero, respectively at cutoff, none of these, or maybe some combination.
The results of this study suggest that the frequency for which the group velocity is zero is a
more fundamental concept for cutoff than k,=0 and, correspondingly, the phase velocity
becoming infinite.

In addition to backward waves forming during the k, tracing process, regions
naving complex k, in the form of B—ja can also exist, even in lossless media! Normally,
this would not be expected since wave attenuation in lossless media with finite power flow
would seem to violate conservation of energy principles. Clarricoats and Taylor [14]
predicted the existence of these complex modes in the two-dielectric waveguide. It is
pointed out there, and by Chorney [15], that these complex modes always exist in pairs
having complex conjugate axial wavenumbers so that zero net power flow is preserved
across any transverse plane of the waveguide. Therefore, conservation of energy is
enforced since no net axial power flow is present. This does not imply, however, that

locally there is no axial power flow. It will be seen later in this thesis that the axial power




flow is mostly nonzero in the cross section of the guide and only the ner power flow goes
to zero. Chomey also states that not only is the real power flow zero, but the complex
modes also carry no net reactive power. Laxpati and Mittra [16] also note the zero axial
power flow condition for the complex modes in lossless media and further claim this to be
a condition for these modes to physically exist in the waveguide and not merely as
"spurious,” nonphysical modes. Recently, Kalmyk, Rayevskiy and Y gryumov [17] have
presented experimental evidence showing the existence of these complex modes in a
circular waveguide.

Although no net power flow is carried by the complex modes in lossless media,
once losses are introduced into the dielectrics, the relative phase difference between the two
coupled, complex modes will make net power flow possible. From a shielding application
standpoint, the amount of attenuation in “hese complex modes becomes an important issue.

The final topic considered in this thesis is the experimental measurements for the
inhomogeneous circular waveguide. There were two types of measurement arrangements
used here which applied either to loading dielectrics which were nearly lossless or to those
with significant loss. For nearly lossless dielectrics, a resonant cavity of like transverse
geometry as the three-dielectric waveguide was used to investigate the physical
phenomenon and verify the numerical computations. For dielectrics with significant
losses, a finite waveguide arrangement through a shielded enclosure was employed. The
results of both measurement techniques compared very well with the theoretical predictions
even though a number of rough approximations had to be made to recover from a lack of
proper equipment. The agreement between the calculated values (the resonant frequencies
of the cavity and the attenuation in the firite-guide arrangement) and the laboratory
measurements gives credence to the theoretical and numerical work in this thesis. Coupling
this with additional verification provided by other published work for the two-dielectric
waveguide attests to the accuracy of the theoretical development, presented next, and the

subsequent numerical solutions to this inhomogeneous waveguide arrangement.




CHAPTER 2
THEORETICAL FGRMULATION

The primary concern of this chapter is the theoretical development of the infinite
inhomogeneous waveguide. The particular class of inhomogeneity considered here is a
radial variation in the constitutive parameters forming homogeneous, lossy annuli with
invariance in the ¢ direction. The resulting set of equations is too complicated to solve
analytically since the expansion functions for the radial variation are Bessel functions;
therefore, numerical techniques are employed. The principal objective of this numerical
analysis is to find the axial wavenumber, k,. Once this has been determined, all other
quantities such as the field components, attenuation, and power flow can be calculated.
This determination of k, is based on an eigensolution concept which will indicate situations
that can exist and not necessarily those that do exist in a physical arrangement. Further
analysis of the source coupling would be needed for this. However, since a sum of
solutions is also a solution in a linear treatment, this eigensolution method is very useful in
explaining results from measurements by using either one solution or perhaps adding a
number of solutions.

The existence of hybrid modes in this type of inhomogeneous guide is one big
factor distinguishing it from the homogeneous case. A hybrid mode is one that has both
nonzero axial electric and magnetic componenis. This is in contrast to the homogeneous
case for which modes of vanishing axiai electric or magnetic fields can be constructed. The
method of mode nomenclature for these hybrid modes is still a fuzzy issue. Many authors
have put forth their suggestions but no method has won sweeping acceptance. The method
chosen here is somewhat of a "hybrid" in that Snitzer's method [18], discussed later, 1s
used ir conjunction with a mode-tracing concept outlined by Waldron {19]. The latter topic
is discussed fully in the next chapter. It is stated without proof by Waldron that all of the

modes in any waveguide have a 1:1 correspondence with those of a homogeneous, pec




guide of appropriate cross section. This allows a method of nomenclature based on the
homogeneous guide as a limiting case. In any event, each mode ca.: be established by its
axial wavenumber. Computation of this wavenumber is possible as a solution to a set of
equations constructed from first principles. This formulation, shown next, is an exact one

and no approximations are needed.

2.1 Scalar-Wave Function Method

The cross section of the infinite waveguide having multiple concentric circular
dielectrics is shown in Figure 2.1. (All figures and tables appear at the end of each
chapter.) Itis assumed that all dielectrics are concentric about the sheath center and that the
constitutive parameters for each dielectric are constant. Maxwell's equations for a time-

harmonic field in a homogeneous space are given by

VxE = -jopH VD

]
o

VxH = jweE VB

0.

The time dependence e/** is assumed throughout this work and subsequently suppressed.
In (2.1), p is the permeability of the medium and € is the permittivity. There are a number
of ways in which these equations may be combined and the fields solved to obtain the
characteristic response in a bounded environment. One general approach is to stay with the
six field components and write solutions in terms of E, and H, [20]. Another approach is
to use the vector potential method and generate solutions to a two-dimensional scalar
problem for the transverse geometry assuming invariance in a third Cartesian direction
[21]. This second meth.<' . ~hosen here for two major reasons. One, it is elegant in

principle sincc all the ficld comnonents for a mode can be written in terms of one scalar




function of position. Two, some interesting properties of mode designations can be more
clearly delineated when scalar wave functions are used. Whichever method is chosen,
identical results wili be obtained. The only differences will occur in the intermediate steps.

What follows is a brief review of the vector potential method to solve for the
characteristic field response of a circular cylindrical waveguide. This formulation is needed
to introduce the methods and nomenclature for extending the normal, homogeneous
waveguide methods to the more complicated situatior with q concentric annuli.

Using the vector potential method then, these equations can be combined and the

field quantities solved yielding

. 1
E =-VxF - JOUHA + JT.E-V(V A)

(2.2)
1
H = VxA - jweF + —V(V'F
xA -] qu( )

with A and F being the vector magnetic and vector electric potentials, respectively. The

vector potentials satisfy the vector Helmholtz equation

VT + KT =0 (2.3)

where T = A or F and k?=w?jie. Two characteristic field responses, namely, Transverse
Electric (TE) and Transverse Magnetic (TM) to the z direction, can be constructed with
appropriate choices of these vector potentials. Then from these two mode types, all field
patterns in the guide can be expressed as a linear superposition of them. In particular, in

the ith dielectric let

F,=0 A, =zy] (2.4)




where ;" is the magnetic scalar wave potential, and (2.2) reduces to

E —_1_. Z‘Vm H, -.L.q\_‘f“_
P jog; dpdz T p do
Q2.5

e 1 W _

jwep 900z =35

L 2

= | — + k] H, =0

& J(’)":’i[az2-.-kl l 5

with k; being the intrinsic wavenumber of the medium. Since Hz;=0, the field is TM to z.

Likewise, in the i® dielectric let

Fi=zy; A;=0

where \Vf is the electric scalar wave potential. Then (2.2) reduces to

S A g oLV
P jop; 0pdz Pi” p do
(2.6)
1 3y ov§

Ho, = Somp 969z Eo.= 3p

H __1_[§i+k3 © E. =0
5o 5,2 ‘ S

Since Ez;=0 in this case. the field is TE to z. The field in any annulus within the guide can

be considered as a linear superposition of these two field types.




Also, since the y;'s are chosen as Cartesian components of the vector potentials,

the y;'s necessarily satisfy the scalar Helmholtz equation
Vi + Ky =0 . @27

In addition, the geometry inside the guide remains separable with the inclusion of these
concentric dielectrics. Therefore, it is quite easy to construct solutions to the scalar
Helmholtz equation in each dielectric. Solutions to this homogeneous partial differential

equation can be found using the separation of variables method. Accordingly then,

y; = P(p)®()Z(z) . (2.8)

By substituting this equation into (2.7) and expressing the Laplacian in cylindrical
coordinates, (2.7) can be separated into three equations, each a scalar homogeneous
ordinary differential equation in one cylindrical coordinate only. For the circular cylindrical
geometry here, the general form of y; will be

;= B,,(kpip)h(mb)h(kzz) 2.9)

where B, is some linear combination of solutions to Bessel's equation, h(n¢) is some linear
combination of the trigonometric functions sin(n¢) and cos(n¢), and h(k,z) represents the
longitudinal variation of the propagating wave. For a wave propagating in this axially

tnvariant environment

h(k,z) = e %* (2.10)

10




is a correct choice. Here, k, represents the longitudinal wavenumber. In a transversely
bounded environment, the B, function will be a linear combination of two independent

solutions to Bessel's equation of the form

By(kp p) = [a;7,(ky p)+biN; (ki p)] (2.11)

with J;, and N, the Bessel functions of the first and second kinds, respectively, and a; and
b; being constants. For any source-free region containing the origin, b will be zero. For a

physical system, one would expect the fields to be single valued. This implies that n

should be chosen as an integer. Finally, for the y; to be a valid solution to (2.7) the

separation relation

lc,~2 = mzuiei = kg‘+ kf (2.12)

must be satisfied. By phase matching considerations of the tangential fields, k, will be the

same throughout the cross section of the guide.
2.2 Multiple Concentric Dielectrics

To formulate the problem of q concentric dielectrics, the y;'s are constructed in

view of (2.9) and the ensuing discussion. In each dielectric then,

Vi = Can(kp,P)cos(n@)c‘jkn‘
yi= Cl3Jn(kp,P)sin(n‘b)t:"]"z

11




W7 = [Coylalk, ) + CN, (K, p)lcos(ng)e
W = [CoaTy(ky p) + CpeNy(k,, p)lsin(ng)e " 213

W = [CuJolky p) + CoNy(k, plcos(ngle
Vi = [Calalky p) + CuN,(k, p)Isin(ngle

%n = [qujn(kpqp) + CQZNn(kPqp) ]Cos(nq’)c_jk‘z
Vg = [Cqalally P) + CoaNalky p)lsin(ng)e ™

The coefficients C are unknowns at this stage and will be solved for in the next chapter.
The index r refers to the layer and s to the coefficient of the specific radial variation in the
expansion (an integer from 1 to 4). C,, and C,4 are both chosen equal to zero since the
Neumann function, N,, is infinite at the origin and there is no reason to expect singularities
in the field there. By the azimuthal symmetry of this waveguide arrangement, there is a
degeneracy in the ¢ variation except for the modes having n=0 [7]. For simplicity, only
one of these is shown here.

The boundary conditions for this problem (that the tangential fields are continuous
across each dielectric boundary) must be applied in order to evaluate the coefficients. At

each dielectric interface there will be four equations of continuity— one equation for each

of Es, E;, Hy and H,. This gives a total of (4q-4) equations. The total number of
unknowns is (4q-2) due to the fact that C,, and C,4 have been evaluated on physical
grounds. Two more equations are needed. These, of course, are provided by the guiding

structure which determines the major propagating characteristics of the system. Assuming

in this case a pec, then E,=0 ana E,=0 at p=b. Therefore, the total number of equations

and unknowns is equal at (4q-2).

12




13

As mentioned previously, the total field in each annulus will be a linear
superposition of TE and TM fields to z. To apply the boundary conditions then, the fields
must be computed according to Equations (2.5) and (2.6). Proceeding, let

V" = y"h™(ng) = {[CyyJnlky p) + CﬁN,,(kpip)]e'jk"}cos(ncp)

and (2.14)
i = vih*(ng) = {[CisTp(ky p) + CMNn(kpxp)]c—’klz}sin(n¢) )

Using this notation,

2
kPi
Aad (2.15)
2
ko, .
H, = Jors Vi (2.16)
and
ik, NP AV
E%:' . a¢ +B
’n"’:z‘p P @2.17)
EQi = —w—a:'-\;flnhe(n¢) + kpi‘;!ie ’he(nQ) .
Also,
- ~jk, oyf _ oy
%7 jopp o0 dp 2.18)

—nk; 2o m “m’ m
Ho, = G Wih"(00) — ko W" h™(n0) .
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The above primed quantities denote differentiation with respect to p as

v = [CiyJn(kpp) + CoN, (i, p)le

(2.19)
¥ = [Cigdy e p) + CiaNy (kp p) e 7
Equating tangential components of E and H at p=a gives
(i) forE, —
E—z(x-l) = Ezl at p=a
then,
2 2
kF’(&-l) \;,m _ i\zfm
jGy) T joe, Tt
or,
2
kp(t_l)el[c(t-l)1Jn(kp(‘_l)a) + C(l—l)an(kp(‘_l)a)] (2.20)
~ kp EnCulalky @) + CoNy(k, )] = 0
(i1) for H, —
H,=H, ot p=a
then,
2 2
kp(l-l) \;’c _ k.pl ‘e
JoHy 1D = Jop, ¥
or,
2
kp(‘_l)u![c(h]):}'ln(kp(‘_’)a) + C(t—1)4Nn(kp(‘_,)a)] (221)

- kg‘u(,_l)[CGJn(kpla) + CyuNy(ky 2)] =0




(iii) for Ey —

then,

or,

(lV) for H@ —_—

then,

or,

E°(x—l) = EO! at p =a

m—nfna oh*(ne) + ko W ph(no)

nk,

= 2)]

[C(t-l)lJ (kp( )a)+c(l—l)2N (kp(x D

p( U[C(‘_l)_«,l (kp( )a)+C(l_1)4N (kP( )a] (2.22)

} %[Cujn(kpla) + CoNy(kp )]

—~ ko [Cialo(kp 2) + TNy (ki 2)] =0

Ho(x-l) = H°x at p=a

m::l W(-ph™ ("¢)+kp( l,W(t—l)h (no)

- [ 00 + ko™ e =

[C(t—l)lJ "k

. nk,
@1

a) + Cy_1)2Ny (k

P( ) Pi-1) 9«-1)3)]

[C(t—l)3J (kp( )a) + C(I—IMN (k a)}

Pe-’ 2.23)
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~ K [Cy 0, Uy 3) + CoN, ey 2))
nk,

= m[Can(kp‘a) + C,4Nn(kp‘a)] =0 .

The remaining boundary condition to apply is that for the guiding structure itself. For a

pec, the tangential electric fields E, and E, must equal zero at p=b. This implies from

considering Equations (2.13), (2.15) and (2.17)

CatJallp D) + CoaNy(k, b) = 0

and 2.24)
Cq3Jn'(kqu) + Cq4Nn'(kqu) =0 .

Equations (2.20) through (2.24) form the primary means by which this inhomogeneous
waveguide problem will be solved. Collectively, these equations may be considered to

form a (4q-2) matrix on the "variables” C,,. Since there are no forcing terms, these

equations can be written in the matrix form

(AllC]=0 (2.25)

where [A] is a (4q-2) square matrix and [C] is a (4q-2) column matrix. For the nontrivial

cases, (2.25) is valid only for
det(A] =0 . (2.26)

The variable that will be solved for in order to enforce (2.26) will, of course, be k,. Once

k, is known, all other variables and fields can be computed as will be shown later.
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2.3 Two-Dielectric Matrix Construction

It may be instructive at this point to actually construct the matrix [A] for the case
having two dielectrics. This matrix will then be compared to other work as a verification.
Let the inner dielectric have constitutive parameters W, €; with radius a, and the outer W,

€, with radius b. The guiding structure will be assumed a pec. The matrix [A] is then

constructed using Equations (2.20) through (2.24) giving

[, 2 2 2
CeE 0 KieE, KgE, 0 0 |
2 2 2
0  kyMEy O 0 koEz kyuEq
[A] = “’elaEI ke, F1 (ﬂﬁzaE2 0’523E4 a2 e (2.27)
B 2p B KES —ap Mg |
%EU Gpatt P Qa2 opga
0 0 E, E, 0 0
0 0 0 0 E,  Eg
where
Ey = Jo(ky 2) E3 = Ny(kp 2)
Ey=Ja(kp 2) E4 = Np(ky,2)
and
rCll-
Cis
-, | Cn
[Cl=
Ca2
Cas
| Caa
with
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[AllC]=0 .

This matrix is in agreement with Harrington [21]. Here, the matrix could be made smaller
in size, from (4q-2) down to (4q-4) through elimination of the last two rows by combining
the third and fourth columns and the fifth and sixth columns. However, to be more general
and allow for easier computer programming with the inclusion of other guiding structure

boundary conditions, this form is preferred.

2.4 Hybrid Modes

Examining matrix [A], when n=0, coefficients Ci1» C;1 and C,, are not related to
coefficients C,3, Cy3 and C,4 and the field separates into modes TE and TM to z [21].
From (2.14) then, the y;° 's are not related, or coupled, to the ;™ 's. This is precisely
what is meant by TE or TM "modes." That is, there exists a relationship between five of
the field components describing an allowed field pattern with the sixth field component,
either E, or H,, equal to zero. But there is no relationship between the coefficients and
hence the fields of the two mode types. In all other cases, where n#0 and k,»0, the fields
are neither TE nor TM, but are hybrid modes. This means that each mode in the guide will
have, in general, both nonzero E, and H,.

The main emphasis here is that the field pattern in each dielectric is considered to be
a superposition of two "basis fields": the TE and TM modes. This is done in each dielectric
and the y; 's are constructed as per separation of variables of the scalar Helmholtz
equation. The boundary conditions are enforced on the system and the expansion
coefficients are solved for. If the expansion coefficients of one mode type are not related
to, or not coupled to, the expansion coefficients of the other mode type, then TE and TM
fields, or modes, can exist in the guide. Herein lies the main point. This means that the

field can have its pattern described by just the TE field relationships or jusr the T™M field
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relationships. However, if the guide is inhomogeneous, the coefficients of the TE and TM
modes become interdependent. Then the field must be written as a superposition of TE and
TM field patterns and cannot be separated. The expansion coefficients of the two mode
types become coupled in this case.

Another way to look at this situation and investigate this coupling of coefficients
concept is to go back and consider Maxwell's equations in (2.1). Not every solution to
(2.3) (with T = E or H) will satisfy Maxwell's equations. One also needs to enforce the
divergence relations in (2.1). Expanding these out in cylindrical coordinates and
substituting the linear superposition of (2.5) and (2.6) for the field components in a source-

free homogeneous medium give in the i dielectric

V'EiEi =0 =

2l
P IplLjo\opaz ) ~ &3¢ P jop\3edz /T 5 3p (2.28)

s B sl 2l e

which is only a function of ;™. Likewise,

V'“.‘Hi=0 =

[_1__(62%‘)_ a\v’“]
jop\3eaz )~ M op (2.30)

2
+.a_.[i e]_o
0z jmwi -

Ll a(R), 0] 12
p dpl jw\ opoz Hie p 00
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PT{Jw[g:gzﬂ %‘a{ (gzgzﬂ a(kf;W?LO @2.31)

which is only a function of y;°. What has tacit'y been assumed here is that

12 &3 o Lo d 232
PopTioe | p gop paptide ~ p deop '

This is true only if these partial derivatives are continuous and the medium homogeneous.
All of the functons in (2.32) are discontinuous at p=0. Otherwise, they are continuous in
a homogeneous space so that Equations (2.29) and (2.31) are valid, and the coefficient sets
(C;1,C;2) can be determined independently of the sets (C3,C,). Hence, TE/TM modes are
possible.

However, in an inhomogeneous guide this is no longer the case. Consider from

(2.28) and (2.30)

19 N &dv 19 o ] -
DIpi o0~ p ooop poprioe © p dedp (2.33)

since in general, €,=f(p) and ui;—g(p). (No variation of €;and y; in ¢ is assumed in this
study. If this is not the case, modal separation of fields TE and TM to z would not be
possible and only hybrid modes would exit.) In order for the interchanging of the partials
with respect to p and ¢ to be a valid mathematical operation, the mixed partials of y; must
be continuous. In an inhomogeneous guide this will generally not be true. The y;'s will
be discontinuous. Consider Figures 2.2 and 2.3 which are graphs of the y,'s for a 2.005
in radius pec waveguide having 1 0.1908 in thick Teflon tube (€,=2.1 F/m) of inner radius
0.5008 in filled with lossy methanol (g,=23.9 - j15.296 F/m) at 3 GHz. (The permittivity
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values are from von Hippel [22], and the y;'s and their derivatives will be solved for in
Chapters 3 and 4.) In both cases, the y;'s and their derivatives are discontinuous, within
the discretization of the plot, across each material boundary but continuous within each
annulus. This is in accordance with the previous discussion. These y;'s are discontinuous
functions in p and interchanging partial derivatives is not a valid mathematical operation.
Therefore, the two coefficient sets are related as in (2.28) and (2.30). The manner in
which the coefficients of the two mode types are coupled is not as important as the fact that
they are just related. From this information alone it is sufficient to deduce that TE and TM
fields cannot exist in the guide, but field modes having all six components each must exist,
1.e., hybrid modes. Also evident in these graphs is at p=b

Ny
> =v3 =0

This is consistent with the boundary conditions imposed on the system for E¢; and Ez;.
Evidenced in this example is perhaps the biggest difference between the scalar wave
potential and field approaches to solving these EM problems. In large, the y's will be
discontinuous functions, whereas the fields will be continuous except for bounded-charge
induced discontinuities.

Another interesting case is that of k,=0. For all n, the hybrid mode separation into
modes TE and TM also form identically to the cases when n=0. As an example, the matrix
(2.27) constructed for two dielectrics is informative. Here, n and k, occur in pairs. When
k,=0 the same behavior as for n=0 will occur, that is, hybrid modal separation into TE and
TM modes. However, this separation is for all modes at cutoff and not just the n=0
modes. This gives rise to another modal designation scheme, namely, as the mode tends to
cutoff, the correspondence between the homogeneous cases can be correlated. Although it

has been reported that this method of classification agrees with the limiting case as the




guide becomes homogeneous (23], this is not always true. If no backward-wave region
(Section 3.3) is present in the dispersion graph, the above statement is correct. As will be
seen in Sections (3.5) and (4.2), with a backward-wave region present, a small amount of
loss must be introduced into the dielectrics to choose the appropriate eigenvalue and
corresponding mode designation. It was found from the results after applying this
technique that these two schemes do not always agree if cutoff is defined by the frequency
where k, is zero. Clarricoats and Taylor [14] note something similar to this but place more
restrictions on the rod insert €, value which yields this effect than is really necessary.

For more than two dielectrics, when either n or k, is zero, the modes become TE
and TM in the same fashion as with two dielectrics. As each new dielectric is added, the
original coefficient sets of the two-dielectric matrix remain uncoupled and four new
columns are added in which the new coefficient sets themselves are uncoupled. These
columns are added in virtue of Equations (2.20) through (2.23). From (2.20) and (2.21) it
is seen that the z components of the fields do not provide this coupling. It is only the ¢
components which contribute. With an eye on (2.22) and (2.23), when n or k, =0 the

(C,1,C2) become uncoupled from all other coefficients, as do (C;3.Cy4). The C,

coefficients have the same form as the C ;) 's so the two sets of coefficients in the

previous four columns remain uncoupled with the addition of four new columns.
Similarly, when n and k, are not zero, the addition of four new columns for each new
dielectric interface will not have any decoupling effect or leave any other marked
impression on the matrix [A] other than increasing the size. The work on modal
designations that has been applied to two dielectrics here and in the literature can be

extended to three or more dielectrics without modification.
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2.5 Modal Nomenclature and Designation

Quite surprisingly, there is no universal scheme of nomenclature for modes in
dielectrically-loaded waveguides. There have been many attempts and Bruno and Bridges
[6] give an excellent history of the major ones including a new suggestion of their own.
Beam had one of the earliest methods, which was based on the relative contributions of E,
and H, to a transverse field component [24]. If H, made a larger contribution, the mode
was designated HE, and if E, larger, EH. The fundamental was assigned EH;;. This
scheme was reported to be arbitrary since it depends on which transverse component was
observed and how far the mode is from cutoff. Snitzer devised a new scheme by which
most modern day methods are based [18]. Although Snitzer's work was with a dielectric-
rod waveguide, the extension to the bounded guide is trivial. This method considers the
HE,, mode fundamental by both definition and common usage at the time (1961). All
modes that have the same sign as the fundamental for the ratio of the coefficients of Ez; and
Hz,, namely, C,;,/C,3, are designated HE. All other modes with different signs are
designated EH. Note that the use of HE and EH here is just opposite to that of Beam's.
From numerical work in Section 4.2, this scheme works well for modes above cutoff but
apparently does not apply to evanescent modes since no consistent relationship among the
coefficients could be found.

An efficient and unambiguous method of classification, which can be used in
conjunction with Snitzer's scheme, is to start with the homogeneous case, either a TE or
TM mode, and gradually increase (or decrease) the radii of the dielectrics within the guide
and trace k,. Thereby, the modes HE and EH can be associated with TE and TM modes.
respectively, of the homogeneous waveguide. This is the Correspondence Idea of Waldron
{19] from which a 1:1 correspondence of all modes in the dielectric-filled guide is

maintained with those of the homogeneous pec guide as all nonideal characteristics of the




former approach those of the latter. For example, the dielectric annuli radii approach zero,

the €r; approach one, or the losses in the dielectrics or waveguide walls approach zero.
2.6 Nonzero Wall Losses

If in a practical situation, the metal losses were significant compared to the dielectric
losses, the formulation for this situation can be accurately approximated by considering the
metal to be infinite in extent [25]. If the skin depth is small with respect to the guide wall
thickness, this is a good approximation. Then instead of J; and N, {unctions, L and K,
can be used where I, is the modified Bessel function of the first kind and K| is the
modified Bessel function of the second kind. Since K, exhibits e¥P asymptotic behavior
while I has kP behavior, the coefficients multiplying the L, functions must be set equal to

zero. That is

¥y = [Cqilyli P) + Coaylk, )l
Vs = [Caal(kp P) + CoeKolkcy p)le

(2.34)

where Cg;=C,3=0 and there are (q-1) dielectrics in the waveguide. No other boundary
conditions need be applied to this system and the size of the [A] matrix is reduced to
(4q—-4). This example shows that the analysis used in this chapter is general enough that it
is relatively easy to modify the equations and corresponding matrices to account for other
waveguiding boundaries, not just pec waveguide structures.

To actually find solutions to these radially inhomogeneous waveguide problems,
the characteristic equation (2.26) is solved yielding the eigenvalues k,. This matrix [A], as
noted earlier, is composed of higher transcendental functions and in general cannot be

solved analytically. Instead, numerical techniques are employed, which is the subject of

24




the next chapter. It should be noted in passing that certain special cases may be solved
analytically (for example, n= 0 or 1 and two dielectrics) and using tables of Bessel
functions to obtain numerical results. However, if lossy materials are considered or higher
modes are needed, solutions are not possible using only analytical techniques and tables of

Bessel functions, even for these special cases.




26

(a) Oblique view

)

(b) End view

Figure 2.1. Geometry and physical arrangement of the infinite inhomogeneous
circular waveguide with concentric layered homogeneous annuli.
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CHAPTER 3
NUMERICAL IMPLEMENTATION

The characteristic equations constructed in Chapter 2 are too complicated to solve
analytically, and require a numerical treatument instead. This chapter is concerned with
computation of these solutions through implementation of a root-finding routine to search
for the roots of these characteristic equations. A group of five Fortran computer programs
was written to accomplish this task plus many others, including the calculation of k, versus
w plots, k, versus relatve radius plots, transverse power flow and more. With space
limitations present, only one code, MDCW, is listed here. The other codes are basically
derivatives of this main one.

The use of these programs and interpretation of the ensuing data will be
demonstrated first for the two-dielectric case. This dielectric-rod insert guide case has been
thoroughly investigated in the past as was noted in Chapter 1. Comparison of the results
here with those in earlier published work will lend some validity to the theoretical
development and confirm the accuracy of the computer programs. In addition to this, some
extensions of this earlier work will be presented. Most notable of these is in the area of
power flow, where it will be shown that the idea of a backward wave becomes more
sharply defined for dielectrically-loaded waveguides.

Much emphasis in this chapter is placed on the two hybrid modes HE;; and EH,;.
The reasons for this are that the HE,; mode is always the fundamental mode (has the
lowest cutoff frequency) and that the EH;, mode was found to exist in some finite
waveguide experiments conducted in the laboratory. Some astonishing modal conversions
between these two modes were observed in these experiments. Hence, for a comparison of
the theoretical predictions and the experimentally measured results, these modes are

emphasized.




3.1 Root Finding by Muller's Method

Solutions to (2.26) must, in general, be obtained numerically. This equation can be

thought of as a one-dimensional function in the argument k,
flk,) =0 . (3.1
However, if losses are present or in some fashion k, becomes complex such as
k,=p-ja, (3.2)

then the one dimensionality of the function is lost and solutions to (2.26) must be found in
the complex plane. Probably the most popular numerical method for solving a generic
problem such as (3.1) is the Newton-Raphson method. The difficulty in applying this
method, however, is that the derivative of the function must be computed. Since the
derivative is unknown analytically and numerical differentiation is not a stable operation,
the Newton-Raphson method will not be used. Instead, the roots of (3.1) will be found
using Muller's method. This method is a generalization of the widely known secant
method, but an inverse quadratic interpolation is used instead of a two-point linear
interpolation {26]. Muller's method can be derived by considering the quadratic function

(27]
f(x) = a(x-xz)2 + b(x=xp) + ¢ . (3.3)

The coefficients a, b, and ¢ can be evaluated with the specification of three initial guesses,

Xg» X1, and x,, for the root. The computed root of this quadratic function is

30




2
X3 =Xy = (Xz“xl)[ ___C__] (3.4)

bta/ b2—4ac

with

X2—X1

X1—Xg
a = qf(x,) — q(1+qQ)f(x,) + q*f(x)
b = (2q+1)f(x,) — (1+9)*f(x,) + q*f(x,)
¢ = (1+q)f(x,)

A visual image of this quadratic fit and the implementation of this method are shown in
Figure 3.1. The zeros of this unique quadratic are calculated and the next point for another
quadratic fit is located using x;, x,, and now, x5. This process is repeated until the zero of
the exact function is found within a specified tolerance. The sign in (3.4) is chosen to
make the magnitude of the denominator the largest. The two main advantages of this
method are that, one, complex roots may be found due to the quadratic nature of the
interpolation and, two, the root does not necessarily have to be bracketed with the initial
guesses in order to converge. In fact, just as with the secant method, the root may not
remain bracketed after the searching process begins even if it initially was. This advantage
may also be a disadvantage, since for certain functions, Muller's method may actually
diverge from the root depending upon the behavior of the exact function near the root. All-
in-all, Muller's method is very useful and accurate for most applications of this type. It has
its own shortcomings in certain instances, most of which can be rectified by simply

restarting the search routine and changing the initial guesses.




3.2 MDCW Computer Program

Muller's method forms the basis of the computer program "MDCW" (Multiple
Dielectric Circular Waveguide) which is used, among other things, to solve the
characteristic equation (2.26). (A listing of the Fortran source code is given in the
Appendix along with a brief description of the program. This program is the basic
computer code used in the study of this waveguide problem. Most of the other programs
written and used in this work are derivatives in whele or in part of the philosophy and
methods employed here.) In order to search for the roots of (2.26), the determinant of the
matrix must be computed repeatedly. That is, in each iteration of this root-finding scheme,
the function, f(k,), being evaluated is the determinant of {A]. An efficient method for
finding the determinant of a matrix is by LU decomposition [26]. This is a tridiagonalizing
method whereby the determinant is computed as the product of the diagonal elements in
either an upper or lower triangular matrix. The LU decomposition can atso be used to
solve a set of linear equations by back substitution which will be of value later on when
computing the coefficients C,;. This method then is efficient in that it can perform double
duty so to speak.

The iteration process searching for the root k, that satisfies the characteristic
equation is terminated upon satisfaction of some predetermined convergence criterion. The
criterion chosen here is for two k, values to differ by less than some user specified
accuracy. Typically 108 or 10" is used. Although these are quite small numbers,
Muller's method converges extremely fast for the functions encountered here. In addition,
specifying small tolerances such as these can actually speed up convergence in some
instances as when this program is automated for k, versus o plots. Calling these
"tolerances” an "accuracy" can be somewhat misleading since convergence to incorrect
answers is also possible. Once a certain root has been located, other factors must be taken

into account to verify that this is a valid root and the one being sought. These factors
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include the value of the determinant, the values of the coefficients and kp;'s, and the
resulting field patterns which can be computed once the coefficients have been solved.
After the k, value has been found, the corresponding {C] vector (cf. (2.25)) can be
calculated. Since det[A]=0 is the root-finding criterion, the rows and columns of [A] are
not all linearly independent. In general, with n=(4q-2), the rank of [A] is (n-1). Since
there are n unknowns and now (n-1) linearly independent equations, one component of the
[C] vector can be chosen arbitrarily. In this case, C;; will be chosen equal to one. (The
reason C,, is chosen and not another component is important and will become evident

when power flow is discussed.) An inhomogeneous set of equations resulis of the form

ay 7 an|[Cis ay)
: : =] (3.5)
Ay 7 apn | Coa an|

where the a's are elements of the [A] matrix. This system of equations is solved giving the
C,,'s using LU decomposition plus back substitution [26].

The final step in computing the fields from (2.5) and (2.6) is to substitute the C's
into (2.13). This then will give all of the fields thioughout the guide. As has been
mentioned in Section 2.4, the fields within the guide will be a linear superposition of fields
TE and TM to z.

One principal requirement for this program was that it be able to run on a personal
computer (PC). Using Microsoft's Fortran v4.01 and double precision real and complex
numbers (64 bits of precision for each of the real and imaginary parts), one total iteration
for three dielectrics takes approximately 2 sec on a 12 MHz clocked 286 AT compatible PC
with an § MHz 80287 math coprocessor. On a 386 Compagq running at 16 MHz with a 16

MHz 80387 math coprocessor, the iteration time is reduced to approximately 1 sec.

33




Typically, for initial guesses within 5 to 10% of the final answer, 4 to 8 iterations are
usually needed to converge. The total times needed to find a solution using a PC, as
illustrated here, are certainly reasonable.

The process of calculating k, for particular dielectric radii can be automated,
enabling k, to be plotted as a function of a continuously increasing (decreasing) radius—
something similar to a function generator. This is quite useful, among other things, in
mode identification. As a standard, the subscripts on HE, , and EH, ,, refer to the n® order
and the m™ rank [18]. In a homogeneous guide, the rank is determined by the successive
ordering of zeros for J,. In the inhomogeneous case this no longer holds. The method of
identification used here, as discussed in Section 2.5, is to use the homogeneous guide as a
limiting case. Thereby, the dielectric radii within the guide are gradually made larger and
the k, versus radius plot is made. The starting point for this plot is chosen as the desired
TE or TM mode in the homogeneous guide, usually air filled. This method of tracing out
the k, has a number of advantages over successive applications of MDCW including speed
and accuracy. A speed increase is quite obvious since all of the parameters do not need to
be entered for each increment in radius. Less obvious is the greater speed realized by using
the previous last two calculations for k, along with a new calculated guess. This generally
halves the number of iterations needed for the calculation of the new root. Accuracy is also
increased since it is much easier to stay with the same mode when tracing than with
MDCW. One can accidentally jump to other modes with the same order but different rank

if the initial guesses are too far from the desired mode.
3.3 Results for Two Dielectrics
At this point it may be instructive to consider a few examples and compare the

results with published data. Two modes of particular interest are the TE;; and TM, in

additon to their hybrid counterparts the HE,; and EH,, modes. In the homogeneous case,
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the TE,, mode is fundamental and the HE, remains so for the inhomogeneous case,
hence, its importance. The importance of the EH,; mode will become more evident later in
this chapter and in Chapter 5 when the experimental measurements on the finite guide are
discussed. Consider a 0.24 m diameter pec waveguide with a dielectric filling having
€r;=10 and €ry=1 F/m as in Figure 3.2. For the TE,; mode in an air-filled homogeneous
guide, k,=14.3 rad/m at 1 GHz. There are two ways in which a k, versus relative radius
plot can be constructed as the insert dielectric rod becomes larger (or smaller) in diameter.
One way is with successive applications of MDCW while gradually increasing (decreasing)
the radii. The best way is through automation of this process and allowing the computer
program to perform these calculations. (As has already been mentoned, due to space
limitations, this program is not listed in this thesis.)

Starting the tracing process for an exceedingly small radius, the plot in Figure 3.3 is
constructed. The HE;; mode is christened in the limit, as a/b— 0 or 1 the TE;; mode is
obtained for the homogeneous guide. One way this graph can be interpreted is as a
transition diagram from one homogeneous case to another. The k, is a function of the inset
radius and is known analytically only for the homogeneous cases, i.e., at the endpoints.
This graph indicates how the axial wavenumber varies between the two homogeneous
situations. This plot compares well with one given by Harrington {21} and is, in fact, an

exact match. The transverse electric fields for the four cases labeled A, B, C and D are

shown in Figure 3.4. In each case, E; is discontinuous at the boundary by the
accumulation of bound charge at this interface. The E, field is particularly interesting in
that the field maximum begins outside the dielectric rod and gradually moves inside as the
rod radius is increased. Related to this is the transformation of kp, from a purely real to a
purely imaginary quantity at k,/kg=1. The wavenumbers are listed in Table 3.1 for these
four cases. The region much below this point is characterized by electric fields primarily
concentrated in the outer dielectric, whereas the region much above k,/ky=1 has its electric

fields concentrated in the inner dielectric. The magnetic fields retain most of their shape as
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a/b is increased with the maximum fields located in the center dielectric. The transverse
electric fields also display an increasingly exponential behavior in region 2 as a/b increases.
This is a further manifestation of the imaginary behavior of kp, which gives rise to
"trapped” waves in the inner dielectric. Imaginary arguments for the Bessel functions in
(2.14) give linear combinations of modified Bessel functions which vary smoothly as
opposed to the oscillatory behavior of the normal Bessel functions. Behavior of this sort is
reminiscent of surface waves and demonstrates itself here for ko, sufficiently large and
imaginary. If there were a coating instead of an insert (meaning &r;=1 and €r,>1), then the
situation would be reversed. Discussions of this arrangement are given by Chou and Lee
[7] and Lee et al. [28].

Another interesting example is an air-filled waveguide of 1 in diameter having a
dielectric insert of €r;=37.6 F/m. For the TE,; mode in an air-filled guide, k,=-j118.3
rad/m at 4 GHz serves as a starting point for the k, versus relative radius plot, with the
results of this given in Figure 3.5. This graph has a peculiar shape in that the HE,, and
EH,; modes tend to form a continuous curv~ This is in stark contrast to these similar
plots for the homogeneous case. Also, a backward-wave region (where the phase and

group velocities have differing signs) has formed in the k, versus a/b plot where the slope

aw
is negative. This backward-wave assignment can be arrived at here by rewriting a/b as 2

with c=speed of light and & is a constant. The x axis can now be thought of as an
increment in ® instead of a/b. Although this graph was generated as a B versus relative
radius plot, the x axis can be regarded as proportional to frequency from which backward-
wave assignments can be made by observing the slope so long as the constitutive
parameters are not frequency dependent.

Another interesting feature of this graph is the region from a/b=0.302 to 0.358
where no purely real or purely imaginary solutions for k, exist. Instead, complex solutions

are found in the form of (3.2). These solutions are the complex or "leaky" modes

36




discussed in Chapter 1 and have been investigated in some detail in the literature [14], [29],
[30]. For conservation of energy reasons, these modes exist in pairs having negative
complex conjugate propagation coefficients k, and -k,*. In this trace, the backward-wave
and complex mode regions exist simultaneously. Clarricoats and Taylor [14] show that
this is always the case for the two-dielectric inhomogeneity but the converse does not
apply. That is, complex modes can exist without propagating backward-wave regions.
Later in Section 4.2 this same occurrence will be shown to exist in the three-dielectric
inhomogeneity. Since there is no fundamental difference between three dielectrics and four
or more, it can be safely stated that for any number of dielectric layers, the existence of
propagating backward waves in a k, trace is always accompanied by a complex mode
region, but not necessarily vice versa.

Once this plot has been constructed, the transverse fields can be computed using the
k, value for the desired relative radius. Choosing a/b=0.788, then from Figure 3.5,
k,=461.7 rad/m for the HE,; mode and k,=265.1 rad/m for the EH,, mode. The fields for
these two cases as computed by MDCW are shown in Figures 3.6 and 3.7. They are all

normalized so that the maximum field component, either E or H, has a magnitude of one.

Figures 3.6 (a) and (b) show the transverse electric and magnetic fields, respectively, for

the HE|, mode. All of the fields are continuous except for the E, component which is
discontinuous by the accumulation of bound charges. Similar plots for the EH;, mode are
shown in Figure 3.7. These graphs compare exactly to those of Zaki [4] except for a
different normalization of the H fields. Zaki also subscribes to some nonstandard
nomenclature for the modal designations [3]. Graphs of these mode patterns are shown in
Figure 3.8. Figure 3.6 agrees with Figure 3.8(a) and Figure 3.7 with 3.8(b). The
excellent correspondence shown here serves as a good source of verification for the
accuracy and validity of the results from the programs for two dielectrics. For more than
two, verification will be provided by experimentation. It is not surprising that such good

agreement has been reached. The analysis used here and that of Zaki are founded on the




same approach, namely, expression of the eigenmodes as a product of the expansion
functions as in Chapter 2. Figure 3.8 also contains the field patterns for the transverse E
and H fields across the waveguide cross section.

Up to this point, fairly typical topics have been discussed concerning the
multidielectric waveguide. Now, some additional discussions will be given for the two-
dielectric case. These examples, which include k, versus w, k, versus €r;, and 3-D power
flow plots, will lend further insight into the rod-insert guide and also bridge the way for

three and more dielectrics.

3.4 Other Axial Wavenumber Plots

The first of these plots to be demonstrated is the k,—w plot for the frequencies 1 to
10 GHz. Construction of this begins by determining the starting point for the frequency
and mode of interest. This is done by tracing out the k, versus relative radius plot at 1
GHz. The results of this are shown in Figure 3.9 for b=0.5 in, €r;=37.6 and €r,=1 F/m.
The two modes shown are HE,, and EH,,. Again, a region of complex mode solutions
exists as for the 4 GHz case except that here it connects two evanescent hybrid mode
regions. It is interesting to observe that in this complex-mode region the distinction
between HE,; and EH,, disappears and both modes seem to exist simultaneously. It is in
this complex-mode region where the starting point for the k,~w plot is obtained at
a/b=0.788. Since HE,, and EH,, appear to exist simultaneously at this point, it suffices as
a starting point for both k,~w plots. The resulting k,~w curves are shown in Figure 3.10.
At a frequency slightly greater than 2 GHz, the modes revert from complex to hybrid with
the EH;, experiencing a small backward-wave region from approximately 2 to 2.4 GHz.

Also in Figure 3.10 are the B—w plots above cutoff for the TE;;, and TM,, modes
in the homogeneously filled guide of 1 in diameter with €,=37.6 F/m. At lower

frequencies, one can see a large discrepancy between the transverse and hybrid modes as
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expected. At higher frequencies, however, it is quite surprising that the plots all have
basically the same shape and trends. This indicates that the inhomogeneous guide could be
modelled as homogeneous at frequencies much beyond cutoff, at least for these two cases,
by selecting an effective €.

In addition to the variation of k, as a function of , is the important case in which
k, varies as a function of the dielectric &r;. This is useful from a number of standpoints.
One, as different loading materials are used, the cutoff frequency of the composite structure
can be observed. Two, the variation in attenuation afforded by each mode can be
scrutinized as the imaginary part of €r; (representing conduction losses) is varied. An
example of the former is shown in Figure 3.11 for the two-dielectric problem having
a/b=0.788, b=0.5 in and €r,=1 F/m at 4 GHz. The inner dielectric's real permittivity is
varied from 1 to 38 F/m for both the HE,, and EH,, modes. For &r;=1 F/m, both modes
revert to the homogeneous case which serves as a convenient starting point for mode
classification reasons. As the dielectric constant is increased, k, increases monotonically in
these two situations. Cutoff occurs at €r;=5.3 and €r=13.9 F/m for the HE,, and EH;,

modes, respectively.
3.5 Power Flow
Power flow is an important topic in waveguide considerations and will be discussed

here for the multidielectric case. In the most general sense, the total power across some

ransverse plane along the guide is given by

P=j E xH*-ds
s 3.6)




where the * refers to complex conjugation. In general, all six components of both E and H

will exist, but since only the z directed power flow is of importance here

S=E x H*

and

l

S, =E, ~ Ey ' Hy* i=l..q. @37

Considering Equations (2.5) and (2.6) for the p components gives

kKo~ -

Ep =~ [_o:"’f‘n h™(n¢) + %\yfh'"(ncp):l (3.8)
ktkpi “e' e “m, e

Hpi = —[m—u‘-\uf h (n¢) + %Wh (n¢) (39)

where the primes denote differentiation in accordance with (2.19). Substituting these two

equations plus (2.17) and (2.18) into (3.7) gives in part

Epi.%i*=[%|kpiw’|2 nk1 |\4!,|2

op;*p?
el (3.10)
k, . *

nkp —_— T — nkp voul 1))

@2ep;*p
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Equation (3.7) can be used to calculate the power flow in the z direction by Equations
(3.10) and (3.11). In particular, the real part of Sz; is of primary importance in this study
since it represents the time-averaged power flow in the axial direction.

An important special case is the azimuthally symmetric modes for which n=0.

Equation (3.7) then reduces to

k,
QE;

S, = — |k, y"'|2
(3.12)

k2 ’ ’
= o | ko [CirJa(kp p) + CaNy (k) |2

If the guide is homogeneous, only one coefficient will be left, namely, C;;. To ensure
nonzero power flow, this coefficient is chosen equal to one when solving for the
coefficients [C]. This is important since it was found that in the limit as the guide becomes
homogeneous, choosing other coefficients equal to one may force the C;; coefficient to
zero in the case where n=0. Since nonzero Sz, is to be expected, a boundary condition of
sorts is implied by this seemingly nonphysical result.

An example of the power flow through a cross section of a waveguide is shown in
Figures 3.12 and 3.13. These figures contain graphs of the three-dimensional (3-D) power
flow along with a slice through the middle of the 3-D plot in the ¢=0 plane. Figure 3.12
corresponds to the point labeled A in Figure 3.3 and Figure 3.13 corresponds to point D.
These two graphs show a tremendous redistribution of the power flow from largely in the
outer dielectric to mostly in the inner dielectric. For a/b=0.1, 99.5% of the power is in the
outer dielectric while for a/b=0.4, 95% of the power concentrates in the inner. Although

the radius of the inner dielectric increases fourfold, at a/b=0.4, the inner dielectric still only
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comprises 16% of the cross-sectional area. A question arises as to why the power shifts in
concentration. This redistribution of power is marked by the magnitude and phase of kp,.
As kp, becomes increasingly imaginary, the power tends to concentrate in the inner
dielectric as noted by these two figures and the values in Table 3.1. Although the kp,=0
point at a/b=0.244 does not mark a 50/50 power distribution between inner and outer
dielectrics (this actually occurs at a/b=0.267), a large imaginary radial wavenumber does
signal a small real axial power flow in that dielectric.

Another example is shown in Figure 3.14. This plot is for the point labeled C in
Figure 3.5 having k,=165 rad/m in the HE,; mode. Here a/b=0.36 and b=0.5 in. One
interesting feature of this power plot is the existence of regions, in the vicinity of the ¢=0
plane, where power is actually flowing backwards towards the source. In this particular
example, the total net power flow is positive with 69% of the power concentrated in the
inner dielectric and 31% in the outer diclcctn'c and negative. However, the inner dielectric
covers only 13% of the cross-sectional area of the waveguide. This is another good
example of how the axial power flow concentrates in the dielectric with a higher real radial
wavenumber. This is a rule, in general, but the actual percentages are also a function of the
mode type and the relative dielectric radii.

The negative power flow phenomenon seen above appears to be a remnant, so to
speak, from the backward-wave region. That is, from taking a number of cases along the
B versus relative radius plot, it was determined that the power flow in the center and outer
dielectrics is oppositely directed for all values of a/b in these two modes. The results of
this are shown in Table 3.2. Although the last entry has a positive value in the outer
region, there still is some negative flow; however, it is less than the positive flow in that
annulus. The values listed in Table 3.2 are ordered as one would trace out an ascending
path along the outside edge of the plot in Figure 3.5 beginning at point A. Examining these
percentages, a picture begins to emerge of the power flow slowly diminishing in the

backward direction within the inner dielectric and a greater percentage going forward.
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Further insight into this is gained through consideration of Figure 3.15 which is the power
flow plot for point A in Figure 3.5 and the first entry in Table 3.2. Here the positive power
flow is in the outer dielectric and the negative within the inner. Owing to the backward-
wave nature of the wave here, the phase fronts are toward the source and the energy
propagation is away. In the backward-wave region, the power flow is positive in the outer
dielectric, negative in the inner. The converse of this applies to the forward-wave region of
the EH,; mode at a/b=0.5815 depicted in Figure 3.16.

This concept of a "backward wave" seems to be somewhat muddled for the multiple
dielectric cases considered here since power is actually traveling in both directions in both
the forward- and backward-wave regions! One needs to keep in mind that in the backward-
wave region, the phase and group velocities have opposite signs. To choose the correct
sign for k,, as in Table 3.2, an introduction of a small amount of loss to the inner dielectric
will make the right choice apparent. Letting €r,=37.6-j0.01 F/m for the case with
a/b=0.3646 in Figure 3.15, two roots to the characteristic equation were found using
MDCW. These are k,=68.22+j0.179 and k,=-68.22-j0.179 rad/m. The first represents an
augmented, forward traveling wave while the second an augmented backward one. The
second is the correct one since the augmentation is bounded by the source and hence a
physical result. In this backward-wave region, the correct result for k, is with both §§ and
o negative. This is the reason for plotting abs(P) in Figures 3.5 and 3.10, for example.

It is also interesting to inquire as to which mode, either HE,, or EH,,, to name the
backward-wave region. By Snitzer's scheme for the sign of C;;/C;, the mode is correctly
called EH,; since the sign is negative. However, if B were mistakenly chosen as positive,
the HE; mode would result since the sign of the ratio then becomes positive. In the past,
the backward-wave region would indeed be labelled HE,,. In the next chapter, it will be

shown in considerable detail that this region is actually part of the EH,; mode trace.




Table 3.1.

Wavenumbers of the four cases labelled in Figure 3.3 for the
HE,, mode in the rod-insert guide having b=0.4A, f=1 GHz,

& =10and g =1.
Case | k, (rad/m) % kpl (rad/m) ko ) (rad/m)
A 14.85 0.1 64.59 14.79
B 17.39 0.2 63.95 11.70
34.37 0.3 56.66 -j27.25
D 49.36 0.4 4422 -j44.69
Table 3.2.

Axial wavenumber and percent total axial real power flow for the five
caces labelled in Figure 3.5 for both the HE,, and EH,; modes in the

rod-insert guide having b=0.5 in, f=4 GHz, & =37.6 and & =1.

a % of total real power flow
Case | k,(rad/m) ® -
inner outer

A -68 0.3646 -22.77 77.23
B -89 0.3600 -31.61 68.39
C 165 0.3600 68.76 -31.24
D 262 0.3900 94.42 -5.58
E 462 0.7880 99.78 0.22




exact function

Yool

initial guesses

Figure 3.1. Example of the quadratic fit procedure to locate

the zero of a function by Muller's method.

Figure 3.2. Rod-insert waveguide arrangement.
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Figure 3.12. Axial real power flow of the HE|; mode (a) in the ¢=0 plane and, (b) 3-D,
for point A in the k, trace of Figure 3.3 having a/b=0.1, b=0.4A, f=1 GHz,
& =10 and &,=1.
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Figure 3.13. Axial real power flow of the HE,, mode (a) in the ¢=0 plane and, (b) 3-D,

for point D in the k, trace of Figure 3.3 having a/b=0.4, b=0.4A, f=1 GHz,
e,x=10 and e,2=l.
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Figure 3.14. Axial real power flow of the HE|, mode (a) in the ¢=0 plane and, (b) 3-D,
for point C in the k, trace of Figure 3.5 having a/b=0.36, b=0.5 in,
f=4 GHz, &, =37.6 and ¢, =1.
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Figure 3.16 . Axial real power tlow of the EH,, mode (a) in the $=0 plane and, (b) 3-D,
for k,=70 in the k, trace of Figure 3.5 having a/b=0.5815, b=0.5 in,
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CHAPTER 4
INHOMOGENEOQOUS THREE-LAYERED DIELECTRICALLY-
LOADED WAVEGUIDES

The theoretical analysis used to formulate and construct the computer programs for
the circular waveguide filled with layered, concentric dielectric media is general enough to
find solutions for any number of dielectrics having real or complex constitutive parameters.
In the preceding chapter, the cases where two dielectrics filled the waveguide were
compared with the previously published work as a verification of the computer codes in
addition to investigating the wave behavior for the rod-insert arrangement. In this chapter,
the waveguide will be assumed to be filled with three concentric, perhaps lossy, dielectrics.
The three-dielectric problem is a reasonable way in which a waveguide-below-cutoff
penetration into a shielded enclosure can be modelled when a hose filled with some material
is passed through the waveguide, into the shelter. Since the three-dielectric problem is so
important, a considerable amount of emphasis will be placed on investigating the wave
behavior in such an environment and obtaining representative samples of the key
characteristics, such as attenuation.

Th= amount of attenuation the wave undergoes in the waveguide is the most
important characteristic in shielding applications. Hence, the wave attenuation will be
calculated as a function of both relative dielectric radius and frequency for varying
permittivities. Only losses from the dielectrics will be considered here since the typical
waveguides are short (6-12 in) so the metal waveguide wall losses will be relatively small.
A very important result, which will be shown in Section 4.3, is that if the dielectric losses
increase in the guide, the wave attenuation is not necessarily increased and may actually be
decreased! This remarkable finding is due to a redistribution of power flow into less lossy

dielectrics, that is not possible in homogeneous waveguides.

65




Also in this chapter, a new modal designation will be presented for propagating
modes in the backward-wave regions. This new designation will be shown to be more
consistent with other properties of the wave, such as net power flow and boundedness of
the wave. A spinoff from this discussion is an investigation into perhaps a refined
definition for the modal cutoff frequency when backward waves are present in the

dispersion graph.

4.1 Lossless Three-Dielectric Waveguides

In most applications of the waveguide below cutoff where a fluid is transferred into
a shielded enclosure, the waveguide can be modelled as a three-dielectric problem, that is, a
hose filled with some material inside an air-filled guide. Theoretical investigations into this
arrangement proceed almost identically to those in Chapter 3 for the two-dielectric guide.
The computer programs were modified slightly to reflect a hose as the second dielectric by
keeping the radius difference between the inner dielectric and that of the hose's outer radius
constant as the inner radius is increased in a k, versus relative radius plot. An example of
the results for the k, versus a/b tracing process in the three-dielectric problem is given in
Figure 4.1 for the lossless case. Here a 0.1908 in thick hose of €,=3 F/m is increased in
diameter inside a 2.005 in radius waveguide at 1 GHz while the permittivity of the filling
inside the hose is varied for the HE,; and EH,; modes. Ali th. : curves vary smoothly
until a/b=0.9 where the outer edge of the hose meets the waveguide wall. For radii greater
than this, the hose is gradually "pushed out” of the guide until a/b=1 where the guide
becomes homogeneous. This a/b=1 point is a convenient check for the correctness of the
mode classification as discussed in Section 3.3. These k, versus relative radius plots, in
addition to their interpretation as k,—® plots, can also be viewed as transition diagrams of
the axial wavenumber as the guide changes from an inhomogeneous guide of (g-1)

dielectrics to a homogeneous guide filled with a material having parameters (U;,,€ry).
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If the permittivity of the hose is increased from 3 to 10 F/m while all other
parameters are left unchanged, a new k, versus relative radius plot shown in Figure 4.2
results. There is little difference between this plot and the one in Figure 4.1 except when
€ry reaches 7 F/m where the HE,, and EH,; mode traces form continuous curves. A
complex-mode region develops between these two curves from a/b=0.5 to 0.6.
Interestingly, a complex-mode region has formed but the propagating backward-wave
region usually associated with the complex mode is absent. This has been reported
elsewhere {14] and this graph provides additional verification of the phenomenon when
more than two dielectrics fill the guide.

The EH;, modes in both figures contain regions of negative slope indicative of a
backward-wave evanescent mode. Two of these regions exist bracketed by forward-wave
evanescent mode regions. Although purely evanescent here, the introduction of losses will
impart propagating-wave behavior oﬂto the fields and the amount of attenuation in these
modes will then become important. The HE,; modes do not exhibit this backward-wave
behavior in the evanescent region, but in Figure 4.2, for a/b greater than approximately
0.9, propagating backward waves are evident. (An exception to this is when &,=2 F/m
and a/b>0.9, when the HE,, mode does have a slight negative slope.)

When the permittivity of the innermost dielectric is made larger than approximately
10 F/m, the tracing process for the k, versus relative radius plots becomes complicated by
the interactions of modes with the same azimuthal variation but differing radially. Figures
4.3 through 4.6 form a series of graphs pictorially depicting these interactions in the same
waveguide airangement as above, but €, ranging from 10 to 30 F/m. Both the HE and EH
modes with unity azimuthal variation are shown for the radial variations 1, 2 and 3. As &,
increases, a few mode traces break closed contours with other modes and form smooth
traces which cover the entire a/b range as with the HE,; and EH,, modes in Figures 4.3
and 4.4. Conversely, some modes that were smooth across the entire range form closed

contours, as with the HE,; and EH,;, modes. Where the slope becomes infinite in any of
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these traces, complex modes begin and continue with increasing a/b until either a proper
evanescent or propagating mode is reached. (For clarity, the complex modes are not
indicated in these plots and only purely propagating or evanescent modes are shown.)

A difficulty arises in Figure 4.5 where it is not obvious how the EH,; mode can
begin at a/b=0, and then end as a TM,, mode at a/b=1. Physically this is not possible,
since by the definition of the mode, the number of p variations is a constant integer. A
similar situation occurs for this mode in Figure 4.4 for a smaller &,, but the transition
occurs between two infinite slope regions characteristic of the complex modes. It is the
HE,,/EH,, and HE,/EH,, coupled complex modes which provide the vehicle for smooth
mode traces across the entire range of a/b. Reasoning similar to this explains how the
mode transition from EH,; at a/b=0 to TM,, at a/b=1 can take place in Figure 4.5 since it is
these same complex modes which are providing the bridge for transition from one trace to
another. This reasoning is further justified by Figure 4.7 where the complex modes are
now included in the figure. The axial wavenumbers for each mode should, and can, be
traced by a smooth curve across the entire range of increasing relative dielectric radius.
However, as shown here, some complex modes must be included occasionally to allow for
these smooth transitions. Without them, seemingly nonphysical traces can result which are
difficult to explain as was seen in Figure 4.5.

By increasing &, further to 30 F/m the traces in Figure 4.6 emerge. The
complexity in the interactions among the various modes increases a great deal in this graph
from the previous examples. The HE,,/EH,, closed contour in the previous graph has
separated and now the HE; and EH,, modes form closed contours in addition to the
HE,,/EH;; modes. Without graphing these traces in this figure and those in the past three,
it would be difficult to properly identify some segments in the traces of this figure, such as
the segment S. However, by examining the other traces and observing the progression
with increasing €;; (which can be thought of as "pegging” the left-hand side of the traces

and slowly increasing the right-hand edge) this segment can be identified as an HEy mode
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trace. Although the mode is evanescent in this region, for lossy materials, this mode and
those nearby in the graph will propagate with some large amount of attenuation.
Knowledge of the behavior of these lower-order modes is important even though they are

evanescent in the lossless case.

4.2 Complex and Backward-Wave Modes

The question arises as to what mode the backward-wave region in Figure 4.5
(which includes the point A) should be named. Following the past work of Clarricoats and
Waldron [9], [13], this region would be designated the HE,; mode— in particular, a
"paranormal sub-mode" in keeping with Waldron's denotation [31]. This idea seems
reasonable since as the permittivity of the loading dielectrics is increased, the HE,; mode's
f-w curve gradually changes from that of a homogeneous guide to one containing a
backward-wave region fcr the inhomogeneous case as in Figure 3.10 and (13]. Waidron,
among others, expresses the belief that the whole curve belongs to the HE,; mode, but in
the region below cutoff, in the backward-wave area, k, is double-valued for this mode, so
that the EH,; mode apparently "disappears" for the range of values where the backward-
wave region exists. It will be worthwhile at this point to investigate whether or not this is a
correct assessment.

The wavenumbers and (C,;,C;3) coefficients for a number of points labelled in
Figure 4.5 of the HE;, and EH,, modes in the propagating region are listed in Tabie 4.1.
In order to choose the correct k, root for these points and especially point A, a small
amount of loss is added to the dielectrics (€r;=20-j0.5, €=3-j0.1 F/m). From the table, it
is apparent that the sign of the real part of C;3 for point A .grees with points B, C and D,
all of which belong to the EH,; mode trace. In keeping with Snitzer's scheme (cf. Section
2.5), the backward-wave region is labelled EH,;. If on the other hand, the root k, for

point A had been chosen on the other branch, which for the backward wave ‘s k,=9.3+j1.5
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rad/m, the new C;3 coefficient would be 40.4+j1.1. The sign qf the real part of this
coefficient would then agree with the HE,; mode but the net power flow would be
negative. Since the net power flow is to be away from the source, the first root is the
correct one (it also has positive net powér flow) and the backward-wave region is rightly
labelled an EH,, mode and nowhere in the k; trace does the EH;; mode disappear. This
idea was illustrated earlier in Section 3.5 for the two-dielectric guide in reference to the sign
of the net power flow. Depending on which branch k, was chosen to be on, the 3-D
transverse power flow plot appeared similar to either the HE,; or EH,, mode graphs from
other points on the dispersion plots. The correct choice was made by examining the type of
wave propagation present (either forward augmented or backward augmented) in additon
to the sign of the net power flow.

An argument against this type of modal designation is that the HE,; mode does not
appear to have a cutoff frequency which is not to be expected for a propagating mode. In

the usual lossless case, the cutoff frequency is defined by k,=0. From the separation

® 0w
relation (2.12), the phase velocity, VP=E-, is then infinite and the group velocity, Vfﬁ’

is zero at cutoff. Since the group velocity can be a measure of energy velocity under the

appropriate conditions, the criterion of v, =0 may be more fundamental than v,=co for

P
defining the cutoff frequency. In Figure 4.7 for example, the HE;, mode has v,=0 but
vp#0 at a/b=0.48 where the slope becomes infinite. This point could represent a cutoff
frequency of the two coupled complex modes as a/b increases and the cutin frequency of
two other modes, the forward-wave HE,; and the backward-wave EH;;.

The plausibility of such a notion as defining the cutoff frequency by vg=0 and not
necessarily with vp=ee can be investigated simply by considering the separation relation in

the definition of Vg as

1 3B _ 3 [ ok,
;:=E_%-Rc{kz}—h{%'} : (4.1)
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4.2)

(4.3)

(4.4)

(4.5)

Equation (4.4) is the usual definition for the cutoff frequency, k,=0. Equation (4.5),

however, is a new relation valid only in dispersive situations, since for a homogeneous

guide, ko is a constant depending only on the "electrical diameter" of the waveguide.

Therefore, in a homogeneous guide, (4.5) will never be satisfied. The kp; becomes




frequency dependent in the inhomogeneous guide because k, is now the known variable
from which ky; is calculated and not the other way around as in the homogeneous guide.
Clearly, k, is frequency dependent as any k,—® plot of the inhomogeneous guide will

)
attest. In an inhomogeneous guide, (4.5) will be satisfied and v,=0 whenever 3‘;-2' =00,

Although this was known beforehand, Equation (4.2) lends some insight into why an
alternative definition of the cutoff frequency is necessary in the inhomogeneous waveguide.
In this light then, the homogeneous guide criterion for cutoff, v,=0 and v,==e, is a special
case of the more general situation where cutoff is defined by v,=0 and vy e in the
inhomogeneous guide.

Additional confirmation for this method of naming the ba ~* = i{-wave modes is

provided by the graphs in Figures 4.8 through 4.11. Here the HE,; and EH,, mode plots

are given for the three-dielectric inhomogeneity with a small amount of loss as e,l’ is varied

from 10 to 30 and Ef1”=0°5 F/m for £,1=£,1'~je,l'. The physical parameters used to generate

these graphs are the same as before except for the hose, which has a new thickness of 0.2
in, that will also be used in the next section for attenuation calculations in the three-

dielectric lossy guide. This thickness is close enough to the previous one of 0.1908 in for

an accurate comparison. All these plots illustrate the splitting of the complex modes with -

the introduction of loss into the dielectrics. In Figure 4.8, the modes progress smoothly
from evanescent to complex and then either to propagating for HE,; or back to mostly
evanescent for the EH,, mode. No propagating backward wave is encountered by these
two modes. In the complex-mode regicn, the HE,, mode is an augmented backward wave
while the EH,, is an attenuated forward wave. The introduction of loss produces some
phase difference between the two complex waves such that nonzero net power flow is
possible.

The appearance of the backward-wave region begins in Figure 4.9 for £,,=15-j0.5

F/m. The EH;; mode becomes backward augmented here in contrast 1o the previous figure




when the HE,, mode was. Indeed, the backward-wave region in Figure 4.9 has
negative as previously predicted. This appears even more reasonable here since a smooth
trace for B, from a negative value in the complex-mode region for conservation of energy
reasons (in the limit as the losses go to zero), to the positive values for forward
propagation, is provided by negative values of B in the backward-wave region. Figures
4.10 and 4.11 contain plots displaying similar behavior for €;,=20-j0.5 and €,{=30-j0.5
F/m, respectively.

In the Figures 4.8 through 4.11, the backward-wave propagating region only
appears when the EH,, mode changed from evanescent to propagating as a/b is varied from
zero to one. As was mentioned in Section 3.3, if anywhere in the k, trace thers exists
propagating backward waves, this necessarily implies that somewhere else in the trace
complex modes exist. Considering these traces then, it is evident that the backward-wave
region is needed to preserve the continuity in the 3 trace and assure that conservation of
energy is satisfied in addition to the boundedness of the wave. In summary of this, under
certain conditions, complex-wave regions in the k, trace can exist without backward-wave
regions appearing. However, if backward-wave regions do exist, somewhere in the trace
complex modes form since there is no other way for the mode to end as evanescent, for
decreasing a/b, and still preserve continuity in the k, trace.

One very curious phenomenon apparent in the plots having a backward-wave
region is the metamorphosis of the modes, as a/b is increased, from either evanescent HE,
or EH,, modes, to not propagating HE,, and EH,; modes as would be expected, but
rather to propagating EH;, or HE | modes, respectively. This behavior is not witnessed in
Figure 4.8 where there is no propagating backward-wave region. As an example of this,
starting with the HE,; mode at k,=-j27 rad/m in Figure 4.9, as a/b is increased from zero
to one, the mode is first evanescent HE,, then backward augmented in the complex-mode
region. The mode next becomes a propagating backward EH,, mode and finally a forward
propagating and attenuated EH,;. The gradual change from an HE,,-like to an EH,,-like
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mode is clearly evident in this example. In this line of thought then, naming the backward-
wave region EH,; may seem up to the designator and not really dependent on any physical
reasoning. However, in addition to the material already presented in support of naming
this mode EH;,, this trace clearly has propagating behavior exclusively associated with the
EH,, mode, whereas the HE,; mode is cut off on this trace. The HE,, mode displays
propagating behavior only on the other trace which begins an evanescent EH,, in Figure
4.9 and ends a propagating HE,; mode.

Another curiosity, which will be men*ioned in passing, is the EH,, trace in Figure
4.10. In Figures 4.9 and 4.11, the EH,; trace is "bent" as it passes from [} negative to
positive with the associated bulge in . In the lossless cases, as in Figures 4.4 and 4.6,
this bulge provides the transition from a backward propagating EH,; mode to a forward
propagating EH;; mode without v, becoming infinite, which would not be physical.
When this type of behavior in the EH;; mode is observed, as in Figure 4.10, it has been
reported by Waldron [13] that a maximum backward-wave region has been attained. For
all other values of g, with i=1,..,q, the bulge will be smaller as evidenced by the plots in
Figures 4.9 and 4.11. This phenomenon has been previously associated with the
HE,,/EH,, degeneracy at the point where B=0 as in Figure 4.10 [10], [13]. From the
work that has been presented here, the mode is better named EH,, so there is no mode
degeneracy as both the backward- and forward-wave regions are EH,,. This is certainly
only a modal nomenclature and in no way is meant to invalidate the results of the previous
authors. The material presented in this section and in the preparatory ones is meant simply
to report a new way to name the backward-wave region that is more consistent with other

properties of the wave and modal designations.
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4.3 Attenuation in Lossy Three-Dielectric Waveguides

The most important characteristic in this study of the three-dielectric waveguide is
the attenuation afforded by dielectric losses above cutoff. Once the modes have been
properly identified, the losses for a particular mode can be calculated as a function of
relative radius or frequency with the loading dielectric's €; as the parameter. The physical
dimensions of the waveguide and hose, for these theoretical calculations, were chosen as
representative of a typical application for the waveguide-below-cutoff penetration in a
shielded enclosure discussed in Chapter 1. A 4 in waveguide of inrer radius 2.005 in was
chosen and a 1 in hose of inner radius 0.4909 in and thickness 0.2 in will enclose the
filling material in the center.

The &, of the hose was selected by consideration of the traces in Figure 4.12. Here,
« is plotted against frequency for the HE;; mode inside the 4 in waveguide with the 1 in
hose filled with a three-point dispersive methanol having values given in Section 5.4. The

parameter that is varied among these plots is the loss in the hose. A value of E,z'=2.7 F/m

was chosen from listings of values for rubber derivatives in von Hippel [22]. From the

traces in Figure 4.12, a value of E,z"=2 F/m was selected since this value placed the a—w
trace in with a "family" of traces with higher €,” 's.

It appears from this graph quite strange that more hose loss causes less wave
attenuation. The reason this occurs is as e,z" increases, the power flow is "expelled" from
the inner two dielectrics and out to the third, where there is no loss and the wave is
attenuated less. If the guide walls were lossy, this effect would be less pronounced;
however, in this study, the guide is very short so the wall losses will be negligible
compared to the dielectric losses. In this section then, the attenuation afforded by dielectric

losses will be calculated using a value of €,,=2.7-j2 F/m for the hose and all the

permittivities of the dielectrics inside the guide assumed to be independent of frequency.
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The modes that will be considered for these attenuation plots are the three lowest-
ordered nonazimuthally symmetric modes— the HE,,, EH,, and HE,,. Figures 4.13

through 4.18 contain traces of o versus a/b for these three modes with e,l’= 2 and 10 F/m.

These two values were chosen heuristically and yield enough disparity to discern trends in
the attenuation as various parameters are changed. For each e,l’ value, five e,l" values (1,
3,5, 7 and 10 F/m) were chosen as parameters for the loss. (Although these plots give a
in Np/m, conversion to dB/m is possible by multiplying a by 8.6859=20 log,,(e).)
Probably the most noticeable characteristic of these plots is that a higher e,l" value does not
necessarily iiaply more loss as would be the case in a homogeneous guide. These graphs
clearly show that the relative amount of attenuation between two iossy filling materials is
not on.y a function of the dielectric loss but also on how large the inner diameter of the pipe
is in relation to the sheath size. A specific example of this is in Figure 4.13 with a/b=0.6.
At point A, k,=11.1-j14.1 for €, =2-j10, and at point B, k,=3.7-j24 rad/m for £;=2-j1
F/m. More attenuation is provided by the < ;=2-j1 F/m dielectric than by the other. This

relation reverses itself as the guide becomes homogeneous, as it should, since in this case a

I

higher g,” implies higher attenuation from dielectric lcsses [20]. Although only the HE,,

mode was considered in more detail here, all of these modes in Figures 4.13 through 4.18
contain elements of the same basic behavior.

Another common characteristic among these modes is the existence of a region from
a/b=0 to some point nearby where all traces have approximately the same values for a,
after which the traces separate. This region is the cutoff region where the modes are
propagating only slightly but are highly attenuated. The wave impedance in this region is
mostly reactive and the attenuation is primarily caused by the wavelength of the excitation
field being too large to create transverse standing waves in the waveguide. Beyond this
cutoff region, the attenuation is due to losses in the loading dielectrics. In a lossless guide,

this transition is abrupt and the cutoff frequency is prominent at k,=0. When losses are
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present, the cutoff becomes "smeared” somewhat and it becomes difficult to locate the
specific point of cutoff.

The other range against which the attenuation will be plotted is frequency. Figures
4.19 through 4.24 contain plots of a versus frequency for the same physical arrangement
as in the previous o versus a/b plots— specifically, the 1 in hose of £=2.7-j2 F/m in the 4
in guide. The & values used as parameters are the same for this graph series as in the
previous, which are listed on the plots. The frequency band is slightly different for each
mode and was selected as a good example of attenuation near the cutin for each mode.

A common characteristic throughout these plots, and also very similar to the a
versus a/b plots, is that the relative amount of attenuation between two g.” values with
similar physical dimensions is dependent not only on the sizes of the €.” 's but also on the
frequency. This is equiva.ent to the conclusion reached with the o versus a/b plots
provided &, is not a function of frequency, which it is not here. A similar statement can be
made for the relation between €.” and the amount of attenuation: a larger €,” does not
automatically imply higher attenuation for all frequencies in these inhomogeneous guides.

An interesting phenomenon displayed in Figures 4.19, 4.20 and 4.22 is that the
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largest amount of attenuation is obtained by the smallest E,l” value. That s, for 8‘1”=1 F/m,

much more attenuation is realized at higher frequencies than for a larger e,l”. The reason

”

for this was discussed earlier in conjunction with Figure 4.12, where for the low.. &,

value the power flow is concentrated primarily in the inner dielectric and moves primarily to
the outermost dielectric for larger e,l” values where there is no loss. This redistribution of
power flow is marked by the magnitudes and phases of the radial wavenumbers in the
dielectrics. As discussed earlier in Section 3.5, the axial power flow concentrates in the
dielectric with a higher real radial wavenumber. With losses present, the kp;'s are, in

general, neither purely real nor purely imaginary. Instead, the axial power flow

concentrates in the dielectric having a ko, that is large and has a real part that is much larger

than its imaginary part.




4.4 Power Flow in Lossy Three-Dielectric Waveguides

It was pointed out in the last section that the amount of loss present in the loading
dielectrics can have a very large effect on the power-flow distribution in the
inhomogeneous guide. This redistribution can greatly change the amount of attenuation the
wave will undergo when the dielectrics within the guide have largely differing
permittivities. The effect that the losses in the dielectrics have on the power flow and wave
attenuation can be quite pronounced depending on the many factors mentoned in the
previous section, including the relative radius of the inner dielectrics in relation to the
sheath diameter. A good example of this can be illustrated by considering the four cases
marked in Figure 4.13. The percentages of the total absolute real power flow in each
dielectric are listed in Table 4.2. At a/b=0.6, the power flow is distributed in roughly a
similar manner for both cases A and B having €r,=2-j10 and &(,=2-j1 F/m, respectively.
This is reaffirmed by the 3-D plots of the power flow in Figures 4.25 and 4.26 for these
two cases. However, the wave attenuation in each case is largely different with a=14.1
Np/m in case A and 24 Np/m in case B, even though the loss is ten times less in the second
case. When a/b is increased to 0.88, these distributions change drastically and display a
couple of interesting attributes. For one, in case C (g;=2-j1 F/m, a=22.5 Np/m) nearly
90% of the total absolute real power flow is in the innermost dielectric while in case D
(€ry=2-j10 F/m, ®=33.4 Np/m) there is only 25%. Secondly, in case D, nearly half the
power is flowing in the pipe when it co\ rs only 19% of the cross-sectional area, with the
remainder roughly distributed between the two other dielectrics. The higher dielectric loss
in region one has caused the power flow to concentrate more in the pipe (region two) and
also in the air-filled region (region three). This tremendous change in the distribation of the
power flow is illustrated in the 3-D plots for cases C and D in Figures 4.27 and 4.28,

respectively.
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The attenuation characteristics have reversed from those at a/b=0.6, such that now,
for a/b=0.88, the waveguide arrangement having the larger dielectric loss also has the
larger wave attenuation. That is, case C has a=22.5 Np/m while case D, which has more
dielectric loss in region one, has a=33.4 Np/m. By increasing the losses in region one,
less power flows in this region, in comparison to a similar guide of lesser dielectric loss in
region one (as cases A to B and D to C), but the amount of attenuation is dependent on the
relative sizes of the dielectric diameters to the sheath size.

The effects that the relative sizes of the dielectric constants have on the power-flow

distribution and attenuation can also be quite pronounced. The four cases marked in Figure
4.14 correspond to the four cases in Figure 4.13, except E,l' has been increased from 2 to

10 F/m. Between cases B and F at a/b=0.6, the higher E,l" value unexpectedlv gives rise (o

a smaller attenuation— from 24 to 16.9 Np/m. When the radius is increased to a/b=0).8% in
cases D and H, the wave is attenuated almost equaily in both instances with o= 33.4 and
31.5 Np/m, respectively. Furthermore, cases C and G show the greatest amount of

difference in the power-flow distributions, but surprisingly have nearly the same
attenuation. The reason for this is that both points have Eﬁ":l F/m, which is near that of

e,z"=2 F/m producing roughly the same amount of loss in both dielectrics and, in addition,

nearly the same percentage of power flows in the inner two dielectrics in both cases C and
G. These facts in combination produce the effect of attenuation which varies only
moderately when the dielectric constant in region one is increased by a factor of five.
These three comparisons demonstrate that the differences in the dielectric constants among
the regions in the waveguide can have a large impact on the power-flow distribution and
wave attenuation. More importantly, these comparisons also show that there is no simple
relation between the attenuation and power-flow distributions to the relative dielectric
diameters and dielectric constants for the inhomogeneous waveguide. The relationships are

very complicated and must be obtained for each: waveguide arrangement individually as
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was done for these examples— by tracing out the k, versus a/b plots for many cases while
varying the physical parameters.

Furthermore, a large redistribution in power flow by itself does not necessarily
imply a significant change in the attenuation. For between cases B and C there is a huge
change in the power-flow distribution with only a small change in attenuation, while in
cases A and D there is a large redistribution of power flow and a large change in
attenuation. A large variation in the losses among the dielectrics is an additional factor
which must also be considered when making attenuation evaluations for varying physical
parameters such as the dielectric radii. Again it should be emphasized that the power-flow
distributions and the wave attenuation inside the inhomogeneous, layered waveguide are
very complicated functions of the dielectric radii, constitutive parameters, sheath size and
frequency. No simple rules-of-thumb are applicable to these waveguides and the correct
relationships must be obtained numerically by tracing out the axial wavenumber and

computing the desired fielded characteristic.
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Table 4.1.

Axial wavenumbers and field expansion coefficients for the seven
cases labelled in Figure 4.5 of the HE,, and EH;; modes in the

lossy three-dielectric guide having € =20-;0.5, €, =3-j0.1 and € =1.
1 2 3

Case | k; (rad/m) Ci Cis
A -9.3-j1.5 1.0 -40.4-j1.1
B 4.9-;0.7 i.0 -54.6+}5.5
c | 23.0-10 1.0 -58.0+j2.6
D | 2881.2 1.0 -47.542.0
E 42.3-52.9 1.0 33.3+j0.5
F | 62.1-j1.8 1.0 40.0+j0.4
G | 78.1-j1.4 1.0 66.38+jl.1
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CHAPTER 5
EXPERIMENTAL INVESTIGATIONS

The subject matter up to this point has been primarily directed toward the theoretical
and numerical aspects of the inhomogeneous circular waveguide and developing an
understanding of the principles involved. The emphasis now will be shifted toward the
more physical concemns of this problem and the experimental investigations. The purpose
of this laboratory work is to see how well the theoretical models and methods used in this
development match the physical phenomenon. This also provides a verification for the
accuracy of the computer programs developed and written for this project in addition to
their utility.

Two very different experimental techniques were devised and used in these
measurements. One is a resonant cavity technique which proved very useful for
investigations with near lossless materials. The second technique is a finite open-ended
waveguide method which is much harder to model theoretically but is useful for lossy and

very lossy materials. A major problem encountered in analyzing these experiments was not

111

having accurate values for the permittivities of the loading materials. This made analytical .

verification difficult but not impossible as additional boundary conditions which appeal to
logical argument made predicted permittivities for a select number of materials reasonable.
The finite open-ended waveguide measurements have an additional appeal in that
they are also used in the shielding measurements discussed in Chapter 1. In Section 5.4,
the results of the attenuation measurements for this arrangement will be seen well modelled
by infinite waveguides of identical cross section. This is encouraging for further
Justification of the use of these programs. However, the use of these codes is limited to

explaining measured results. Their use as predictive tools is highly questionable.




5.1 Resonant Cavity Method Justification

One technique for measuring the properties of the dielectrically-loaded infinite
waveguide is with a resonant cavity [11]. At first glance, the finite, bounded geometry of
the cavity may seem far from that of the infinite waveguide. However, the inclusion of end
plates on the waveguide does not affect the separability of the geometry inside the cavity.
That is, the interior of the cavity remains a separable geometry and the interior fields can be
found by using separation of variables as in Chapter 2. Since one would now expect the
waves to be traveling back and forth in the cavity and not propagating in only one direction,

the choice of ¢ 7% for the z variation must be replaced. The choice of

h(k,z) = sin(k,z) or cos(k,z) (5.1

allows for all the transverse electric fields to meet the zero field boundary condition at both

pec end plates. Therefore, for zero tangential fields (E, and Egy) at z= 0 and L, the length of

the cavity, from Equations (2.5) and (2.6)

sin(k,L) =0 =
k= p=0t1,42,... . (5.2)

In order 10 satisfy this boundedness criterion in the z direction, another free parameter
(either w, yt or €) must be fixed. Using (2.12), assuming y and € are known, the resonant
frequencies can be fixed for each p, thus enforcing (5.2). This is in contrast to the

waveguide problem where the frequency is given and the k, determined. This implies that




solutions to the resonant cavity problem must be found in a different manner than for a
waveguide of similar cross section.

With the geometry separable, the dispersion relation given in Equation (2.12)
remains valid for the interior of the cavity. Plots of the dispersion relations for both the
homogeneous and inhomogeneous waveguides considered earlier are contained in Figure
3.10. The methods for determining these plots in those two cases are dramatically
different, but, nonetheless, they are both graphical depictions of the dispersion relatons. If
metal end caps are placed perpendicular to the guide axic at any two points along z, a
resonant cavity is formed for which the fields still obey the same dispersion relation as the
guide fields. The additional boundary condition in (5.2) forces a discretization of these
dispersion graphs so k, assumes only discrete values spaced uniformly by ®/L starting at
k,=0. Using the same dispersicn relation for the cavity as for the infinite guide. the
resonant frequency for a particular mode can be found through this functional relation of k,
and . Therefore, the formulation of the infinite waveguide can be experimentally tested
and verified in the laboratory with a resonant cavity! The major benefit of a resonant cavity
is that a bounded and controlled environment is provided for more accurate laboratory

measurements.

5.2 Resonant Cavity Measurements

The resonant cavity used in the laboratory measurements was fabricated from
aluminum with the interior dimensions given in Figure 5.1. With the excitation and
measuring probes located in the centers of the circular end caps, the TM,, modes are
excited [32]. Although the TM,; mode is not fundamental to the guide, these azimuthally
symmetric modes are easy to excite and prove very stable in the sense that small radial
variations in the probe dimensions do not exc..e other spurious modes. The inside of the

cavity is approximately 3.7 in in diameter and 5.2 in in length. The measurements
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performed in the laboratory were for the three-dielectric case: a hose filled with some
material. The hose was suspended concentrically along the cavity axis with two styrofoam
rings of approximately 1/4 to 1/2 in thickness. It was determined by measuring a number
of resonant frequencies for the cavity, both empty and with the styrofoam, that the rings
provided less than a 0.1% change in the center frequency of the resonance, f,, implying the
styrofoam's dielectric constant is near that of air. The loss due to the rings was also small,
since Afy g increased only slightly. The measurements of the cavity Q (f/Afs4p) were a
source of great difficulty. The primary reason for this was the lack of repeatability in the
Af34g measurements from one setup of the cavity to the next and from one day to the next.
Since with this cavity method the f. measurements were very consistent, the dielectric
losses, which can be derived from the Q, were measured by a different, more repeatable
method to be discussed in Section 5.4.

The excitation and measuring probes in the cavity were straight, 32 gauge wires
protruding into the cavity 0.13 in from the end cap. From trial-and-error measurements,
both the diameter and length of wire proved to be critical in two respects. One, too large a
diameter or length will perturb the geometry of the system excessively and large deviations
from the simple end-plate boundary conditions «‘_EP=E°=O) become evident in the smoothed
resonant peaks. Two, for a probe too short, the coupling to the fields becomes too small
and the resonances are lost in the noise.

The source of excitation for the cavity was a Wiltron 6637A signal sweep
generator. To measure the resonances, a Wiltron S60A scalar network analyzer was
connected to the cavity output through type-N connectors. Figure 5.2 shows the output
from the network analyzer for the arrangement of an empty 0.46 in inner diameter cpvc
hose of thickness 0.0825 in with the frequency swept from 2 to 10 GHz. The resonant
peaks are quite prominent above the noise level near -65 dB. These resonances are all
associated with azimuthally symmetric TM modes. The first peak, the TMy,, resonance

near 2.3 GHz, corresponds to the cutoff frequency of the TMg, mode in an infinite
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waveguide of similar cross section. The loaded Q's for these lower-order resonances range
from a low of approximately 300 to a high near 1100. The next higher mode, the TM,;, in
the infinite guide, is first seen in the stepped region near S GHz, and the TMy; resonances
begin near 8 GHz in the next stepped region. Justification for these designations will
become evident shortly when theoretically predicted resonances are compared with these
results.

When . nose is filled with a silicone sealant (Dow Corning 732), the
resonances in Figc.re 5.3 result. All the peaks experience a significant downward shift in
frequency, but the higher-order TM,), and TM,; resonances undergo the greatest amount.
A comparison of the resonant peaks for the above two cases pius those of the empty caviry
is shown in Figure 5.4. Although the permittivities of the cpvc and silicone sealant are
relatively small (near 3.4 and 2.4 F/m, respectively) there is a large downward shift in the
peaks as shown in the figure. Figures 5.5 and 5.6 show the resonant peaks of the same
cavity arrangement but having a 3/4 in cpvc hose of inner diameter 0.697 in and 0.09 in
thickness, both empty and filled with the sealant, respectively. The TM,, resonances of
the empty 3/4 in hose case occur lower in frequency than do the corresponding ones of the
1/2 in hose case. Curiously, for both the TM,, and TMy; modes, the peaks are higher in
frequency for the 3/4 in hose than for the 1/2 in one. When the hose is filled with the
sealant, however, all the resonances of the 3/4 in hose, including the higher-order modes,
occur at much lower frequencies than the corresponding resonances of the 1/2 in hose. All
graphs of the resonant responses shown here confirm that the density of the resonant peaks
increases with increasing frequency, making it quite difficult to distinguish the individual

peaks of the higher-order resonances.




5.3 Theoretically Predicted Resonances

Comparison of the measured cavity resonant frequencies with the theoretically
calculated ones is a straightforward process. As discussed in Section 5.1, the k,—® plot
for the infinite waveguide is constructed, then the appropriate resonant frequencies of the
cavity are obtained by the discretization of the axial wavenumber into its allowed
eigenvalues. This process assumes known constitutive parameters. In reality, the €'s
were unknown for the materials used in the laboratory. These parameters can be measured
of course, but due to a lack of proper equipment, this was not possible. One way to get
around this stumbling block and find an approximate &, is to assume a value, and if many
calculated resonant frequencies can be made to match laboratory measured values, then one
may assurne, with some degree of certainty, that the €, is indeed the correct parameter. One
difficulty in this is that if the materials are dispersive, as most are in the microwave region,
the € would need to be continuously varied in many small frequency bands to accurately
model the behavior. Since these bands are unknown to begin with, it is not possible to
accurately model dispersive materials using this method. Another difficulty is that the
materials must be relatively loss-free since this peak-matching method is unique, or nearly
so, only in the loss-free case. Therefore, it will be assumed here that the matenials are
lossless and nondispersive.

For the cpvc hose, Fink and Christiansen (33] give a value of 3.4 F/m for the
dielectric constant at 1 GHz and tan 6=0.006. Using this value for the dieiectric constant
across the entire 1 to 10 GHz band, the predicted resonant frequencies were calculated from
the B—w plots for both the empty 1/2 and 3/4 in lossless cpvc hoses. Excellent agreement
was realized considering for 32 peaks which clearly matched the theoretical and
experimental results, there was an average error of less than 1% and a maximum error of
2.1%. For the filled hose, no data for the permittivity were available on the silicone sealant

although Dow Coming has stated that €,=2.8 F/m with tan §=0.0015 at 100 kHz [34].
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Using the heuristic peak matching method, a value of 2.4 F/m for the dielectric constant
was arrived at for the sealant. The TMy,;, TMy, and TMy; k,~w plots for the 1/2 and 3/4
in cpvc pipes filled with a material of €,=2.4 F/m are given in Figwe 5.7. For 29 peaks
which matched, there was again an average error of less than 1% and a maximum error of
2.1% with the measured values. A selected sample of values for these two sets of
comparisons is listed in Table 5.1. More than likely, the permittivities are nu. exactly 2.4
F/m for the sealant and 3.4 F/m for the cpvc since it was required they be lossiess and
nondispersive. However, it is probable that the permittivities are very near those given
above since this additional boundary condition based on the logical argument of matching
many resonances was met exceptionally well.

Finally, the resonant cavity technique inherently assumes a low-loss material(s)
within the cavity. Too high a loss will not allow the cavity to resonate since by the time the
wave traverses the length of the cavity twice, the signal is too weak to contribute to the
resonance effect. Measurements on methanol, tap water and glycerin (all very lossy) gave
the same results— the measured output was completely devoid of resonant peaks. (A
typical example of this is shown in Figure 5.8 for the 1/2 in cpvc hose filled with methanol
in the cavity.) Other techniques are needed io measure the loss effects. One method that
gave surprisingly good results was the finite waveguide excited by horn antennas to be

discussed next.

5.4 Finite Open-Ended Waveguide Measurements

To overcome the inherent shortcomings of the cavity-resonator technique's inability
to measure attenuation for very lossy dielectrics, a finite-waveguide technique was
employed. A small section of guide was attached to a panel on a shielded enclosure, as
depicted in Figure 5.9, and illuminated by a horn antenna. (A more detailed description of

this type of general experimental arrangement is given in [35]).) The wave attenuation
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provided by the guide can be measured with regard to a set of reference measurements
performed with the two antennas in free space. This is a total attenuation from all sources
including diffraction, reflection and wall and dielectric losses. The antenna gains and
system losses are assumed removed by the reference subtraction. To approximate the
losses due only to the loading dielectrics, a new reference level can be chosen, namely, the
total guide setup with the empty hose. Then upon subtraction of this reference level from
the guide measurements with the filled hose, the diffraction and reflection losses will be
subtracted in addition to the system and antenna losses. This is an approximation since the
fields, in addidon to reflection from the inner filling, will be redistributed in the guide from
the empty to filled hose cases. Hence, the losses from other sources will be modified.
However, if these other sources of loss are considered negligible and the filling material
inside the hose the only source of loss, then only this material can contribute to the
attenuation once diffraction and reflection are subtracted. To reduce the reflection losses
from the inner material (which are not accounted for in this referencing subtraction
method), conical-shaped styrofoam plugs were used to help reflect the incident energy
down the guide. All these seemingly incredulous assumptions prove quite reasonable for
these finite-guide measurements since for one, the guide is only 6 in long so the wall losses
are small and two, a Teflon hose (g,=2.1-j0.000315 F/m at 3 GHz {22]) is used to contain
the material and is quite lossless. Two separate examples of these finite guide
measurements will be discussed, both of which use methanol (which is very lossy) as the
filling inside a Teflon tube.

The first example is for a 3/4 in Teflon hose of inner radius 0.3733 in and thickness
0.1908 in filled with methanol inside a 1.5 in diameter aluminum waveguide of inner radius
0.7425 in and length 6 in. The results of this comparison are shown in Figure 5.10. The
measured values given are the results of four measurement cycles to verify the repeatability
of the experiment and identify any experimental anomalies such as humidity effects. The

calculated attenuation shown in the same figure is for the HE, mode of a perfect guide of




similar cross section and length. As discussed earlier, this eigensolution method, used for
the calculated values, indicates only those modes that can exist and not those that actually
do in a physical arrangement. However, these two plots are remarkably similar which
strongly suggests the existence of this mode in the guide. The TMy; mode also has an
attenuation versus frequency graph similar to this one, but azimuthally symmetric modes
are not likely to be excited by the incident fields from the pyramidal horn antenna used
here. Most likely, there are many modes excited in addition to the HE,,, but here it
appears that the major behavior of the attenuation is dictated by the HE,, modal properties
alone.

As was the case with other matenials, the permittivity values fcr the methanol are

primarily unknown; however, von Hippel [22] lists these three values

£=309-j2472 F/m  at0.3GHz
£,=23.9-j15.296 F/m  at 3.0 GHz
£,=8.9-j7.209 F/m at 10.0 GHz .

Linear interpolation was used between these known value~ and is shown pictorially in
Figure 5.11. The use of interpolation here is a bit presumptive since the real and imaginary
parts of the permittivity cannot be chosen independently. These quantities are related
through the Kramers-Kronig equations which specify their unique behavior for proper
satisfaction of the causality principle {36], [37], [38].

Even with this series of rough assumptions, the agreement between the theoretically
calculated attenuation for the methanol and the measured values is remarkable. Both predict
an almost linear increase in attenuation, on the log scale, as the frequency is increased. For
frequency values less than 4.2 GHz, the air-filled reference guide is in cutoff and no

comparison can be made.
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The second example is with a 4 in diameter guide of radius 2.00S in filled with a 1
in diameter Teflon tube of inner radius 0.5008 in and thickness 0.1908 in. The same
measurement referencing method is used here as in the previous case. Excellent agreement
is evident again, with the results given in Figure 5.12 for methanol in the Teflon tube.
Surprisingly, as the frequency is increased here, the attenuation peaks near 6 GHz and
quickly decreases to very small values near 10 GHz. This behavior could not be modelled
with only one mode, but when the effects of the EH,; mode were included with those of
the HE,,, the results were very close to the measured values. This inclusion of the EH,
mode indicates a strong modal conversion between the HE,, and EH,,; modes with the
EH,,; dominating at higher frequencies. In the midband region where neither mode
dominates, the correspondence of measured to predicted values is marginal. This is to be
expected since the theoretically calculated values assume a dominance of one mode over all
others; clearly, this is not satisfied in the midband region. Also, above 8 GHz the
attenuation becomes negative which is not to be expected for this passive system. This
behavior is attributed to the out-of-band responses of the pyramidal horn antennas which
have single-mode operation only up to 8 GHz.

A number of observations can be made concerning these finite-guide
measurements. One, the EH,;, mode was needed in the 4 in guide measurements to
improve correspondence with measured values but not needed for the 1.5 in guide.
Examination of this mode in the small guide showed that the minimum attenuation afforded
was near 200 dB in the 1 to 10 GHz band. Clearly, this mode would not noticeably affect
the attenuation measurements. When it does dominate as in Figure 5.12, the attenuation
trend changes considerably. This introduces the next observation: the atteauation has a
negative slope and approaches a small value in the 4-in guide case at higher frequencies.
This type of behavior is curious from the standpoint that as the frequency increases, the
attenuation from the dielectric losses is decreasing. A question arises as to whether this is

reasonable and if it is unique to this physical arrangement. The attenuation as a function of




frequency for the homogeneous waveguide of varying radius filled with methanol was
examined using the lineariy interpolated €, values for methanol as shown in Figure 5.11. It
was observed that attenuation relationships with frequency for the TE,,; and TM,; modes
assume similar shapes as in the inhomogeneous guide by appropriate choices of the radius
(not necessarily corresponding to either guide), but at much higher attenuation (400-600
dB). However, the negative slope behavior in the high band of the inhomogeneous guide
could not be reproduced with the homogeneous guide— the attenuation is always
increasing in this band or asymptotically so. Although the conducton losses are dectreasing
in the methanol with increasing frequency, in the homogeneous guide the losses remain on
the rise, while in the inhomogeneous 4-in guide they decrease. This decreasing attenuation
with increasing frequency appears to be unique to this inhomogeneous waveguide

arrangement.
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Figure 5.1. Geomecry and physical arrangement of the resonant cavity
filled with the cpvc hose.
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CHAPTER 6
CONCLUSIONS AND SUGGESTIONS
FOR FURTHER STUDY

In this thesis, solutions to the radially inhomogeneous infinite circular waveguide
have been obtained numerically from an exact theoretical development beginning with first
principles. These inhomogeneous waveguides are layered with circular, concentric annuli
having, perhaps, complex constitutive parameters. The modes that were found to exist in
these waveguides are hybrid, meaning that they have both axial E- and H-fields. In
general, no TE and TM modes are possible in the inhomogeneous guide except for modes
with n=0 and all modes for which k,=0. The modal decignation scheme and modal
nomenclature for these hybrid modes have not yet been standardized in the literature. The
modal designation technique used in this work takes the homogeneous guide as a limiting
case such that as the constitutive parameters of the loading dielectrics approach those of free
space or the dielectric radii are increased or decreased until the guide becomes

homogeneous, the hybrid modes approach those of the homogeneous guide as

HEm—TEnm , EHam—TMpm

By Waldron's Correspondence Idea [19], these hybrid modes have a 1:1 correlation with
those of the homogeneous pec guide. Using Waldron's method in conjunction with
Snitzer's scheme of modal nomenclature (the sign of C,;/C;3), a unique method of
defining the proper modal designation is obtained which is both useful and necessary in the
racing process for k,. This tracing process can be complicated by such occurrences as
mode traces intersecting other mode traces of similar azimuthal variation and by the

development of backward-wave regions in the traces when the permittivities become
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sufficiently large in the loading dielectrics relative to the radius of the dielectrics and the
waveguide wall.

It was discovered by applying this method of modal designation and nomenclature
that a new scheme of naming the backward-wave modes was needed since older methods
led to nonphysical results such as unboundedness in the waves and net power flow directed
toward the source instead of away in the backward-wave regions, as examples. This new
scheme becomes further justified after a small amount of loss is introduced into the loading
dielectrics. When this is done, the complex modes are fcund to be coupled forward and
backward waves, as expected from the conservation of energy arguments. After increasing
a/b (or some other physical parameter) to a sufficiently large value, these complex modes
decouple into forward and backward waves. As to whether either of the forward and/or
backward waves propagate, additonal factors must be considered, such as the relatve sizes
of the €; values and relative dielectric radii. This idea of introducing a small amount of loss
1o separate the roots is a very useful tool. Here, however, it complicates matters
considerably since the complex determinant of a matrix filled with Bessel functions of

complex arguments must be computed.
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In addition to using dielectric losses as tools for separating roots, these complex -

constitutive parameters also provide attenuation of the wave which is especially important
in shielding applications. In this study, only the atienuation provided by dielectric losses
was examined since this was anticipated to be the major source of attenuation in the
inhomogeneous guide above cutoff. There was a heavy concentration on the attenuation
provided by the lossy three-dielectric guide since this is a good model for the hose through
the waveguide-below-cutoff penetration. The results of this investigation showed that
contrary to homogeneous guides, there are no simple rules-of-thumb for computing the
amount of attenuation the wave suffers in relation to either the amount of dielectric losses or
the relative sizes of the dielectric radii. It was concluded that each case must be analyzed

separately by tracing out the axial wavenumber as a function of relative dielectric radius or
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~ frequency, as examples. It was also shown that the redistribution of power flow in the
dielectrics can vary the attenuation in counterintuitive ways. For example, in one case,
even though the 10sses were increased considerably in the inner region of a three-region
waveguide, the attenuation was shown to decrease appreciably.

As a verification of the theoretical formulation and the numerical solutions, two
types of experimental measurements were performed. These measurements were separated
into those for near lossless dielectrics where a resonant cavity technique was employed and
those for lossy materials where the finite guide arrangement for the waveguide-below-
cutoff penetration was used. Both gave excellent agreement with the theoretically predicted
values. In the finite guide arrangement, a number of speculative assumptions were made
concerning the reference measurement subtraction from the complete, loaded waveguide
arrangement so that only the losses from the loading material would be observed. This was
necessary, since in this study, only the characteristic properties of the waveguide itself

— were scrutinized and the source properties were not considered.

For future study into this inhomogeneous waveguide topic, an important
characteristic of this penetration which deserves considerable attention is this source
coupling to the waveguide. By considering the particular source of EM excitation along
with the waveguide geometry, the total penetration arrangement could be analyzed such that
a determination of the actual wave attenuation, including diffraction and reflection effects,
could be calculated in a deterministic fashion rather than identifying excited modes and the
corresponding attenuations which have occurred. This would allow for a predictive tool in
the analysis of the shielding effectiveness for waveguide penetrations.

As additional study into this phenomenon, actual measured values for the
permittivities of the loading dielectrics could be obtained, and using these new values as
input to the tracing programs, more accurate comparisons could be performed with the

measured field quantities. The additional boundary condition of matching many resonant

frequencies applied in this study is logically consistent; however, using actual measured




permittivity values is more appealing since the losses present in the loading dielectrics will
have some effect on the resonant frequencies. In addition, materials with dispersive
constitutive parameters could be used in both measurement arrangements with a higher
degree of accuracy.

Finally, a new precision resonant cavity fabricated from brass, rather that
aluminum, would allow for more accurate resonant frequency measurements in addition to
repeatable, accurate Q measurements. From the Q, another measure of the dielectric losses

could be correlated with the theoretical calculations.
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APPENDIX

MDCW COMPUTER PROGRAM LISTING

The program MDCW is a user interactive computer program for finding the k, roots,
the resulting field coefficient vector and the transverse fields for a circular waveguide filled
with q concentric, layered dielectrics. Once all the data for each annulus has been entered
and three guesses near a root given, the program fills the matrix [A] in subroutine
MTRXVAL. Here, by virtue of Equations (2.20) through (2.23), values are added row-
wise to the matrix. These equations contain the J, and N,, Bessel functions which are not
trivial to compute, especially for complex arguments. Recursion schemes to calculate these
Bessel functions suffer from excessive error corruption if upward recursion is used for
more than a few orders. Fortunately, Donald Amos recently published a package of higher
transcendental function subroutines which give incredibly accurate and fast results without
recursion [39]. Instead, 1.= uses a number of series approximations, in appropriate ranges
of the argument, with systera hardware dependent coefficients to maximize the available
precision. This package will compute J, and N,, for positive n and complex arguments in

addition to other special functions.

The computation of these Bessel functions and their derivatives is carried out in
subroutine TOTBES. Evaluation of the determinant of the filled matrix is the last operation
performed in subroutine MTRXVAL. Here, as discussed earlier in Chapter 3, LU
decomposition is used through subroutines DET1 and LUDCMP. It is the value of the
determinant which is returned to the main program. Once the determinant becomes small
enough, as directed by the root finder, signalling the location of a root, the last section of
the main body of MDCW computes the transverse fields and the scalar potentials as a

function of the waveguide diameter for this k, root.
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program mdcw10

*x
*
sk 3¢ 2 200 2 20 200 e 0 20 e e e e e 2 e s 20 e 2 20 20 200 2 2l ade 38 20 2 2he e o4 o e e e o 3 o o o e e ok o ol ofe 26 e ke e e e e 2 2 e 3030 ke e 06 0 ok el ok kol

*

* Program -- Multiple Dielectric Circular Waveguide (mdcw)
%

Written by Keith W. Whites

This version 10 dated March 16, 1988

This program will calculate the axial wavenumber for a circular waveguide
containing q concentric dielectrics having complex constitutive narameters.
Data needed by the program for these calculations are frequency, rurnber of
dielectrics, number of azimuthal variations, and the constitutive

parameters of the dielectrics and their dimensions. The numerical root
finding technique used is Muller's method which configures three points for
a quadratic fit and uses a root of that quadratic fit to move towards

the zero of the sxpression to be evaluated - in this case the det{A].

Output Files: fldmag.wvd - transverse E and H fields (magnitudes, phases,

real and imaginary parts) as a function of
the guide radius.

psie(m).wvd - scalar electric and magnetic potentials as a

function of guide radius.

pwrin.wvd - input file for "pwrflw3" code which calculates
the total transverse, % distribution of real,
and 3-D plot of power flow.

zkztra.wvd - trace of kz (axial wavenumber) in complex
plane as the root finder searches for the
correct root.

Variables: arg - argument of the Bessel functions

besj1 - Bessel function of the first kind (J) of the
inner dielectric of the two under evaluation

bes;j2 - J of the outer dielectric

besnl - Bessel function of the second kind (N) of the
inner dielectric of the two under evaluation

besn2 - N of the outer dielectric

bes**p1 - Bessel function of order plus one

coeff - coefficients [C] for the field expansions

dbes** - derivative of the Bessel function "**'

dc - array of matrix elements for which kz is to be

determined from
freq - radian frequency
ipart - number of divisions the radius is divided into for
the field and scalar wave functions plots

ix1 - matrix row pointer

ix2 - matrix column pointer

nord - order of mode, number of azimuthal variations

numdi - number of dielectrics
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Subroutines: detl - calculates the determinant of a double precision

psie(m) - scalar electric and magnetic potential functions

radii - radius of dielectrics and the conductor (m)

sacc - accuracy sought for kz value

umpl,ump2,ump3 - determinant values for three guesses
to be used with Muller's method

uma,umb,umc - updating information for Muller's method

zeps - permittivity

zkro - radial wavenumber

zkz - axial wavenumber

zmu - permeability

complex matrix using lu decomposition
lubksb - called by detl to perform the backsubsttution
after the LU decomposition in order to calculate
the coefficients [C]
mtrxval - calculates the elements of the matrix from
the boundary conditions for the multiple
concentric dielectric circular waveguide
totbes - calculates the Bessel functions and their
derivatives for both dielectrics bordering
an interface
zbesj(y) - called by totbes to calculate the Bessel
functions of the first and second kinds with
complex arguments

implicit complex*16(a-h,o-1,t-z)

implicit real*8(s)

parameter (pi=(3.14159265359d0,0.0d0),maxdie=5,maxcon=maxdie*4-2)

parameter (zeps0=(8.854d-12,0.0d0),zmu0=(12.56637062d-7,0.0d0))

parameter (ipart=100,ibesnum=maxdie)

complex*16 zkro(maxdie),radii(maxdie),zmu(maxdie),
zeps(maxdie),dc(maxcon,maxcon),coeff(maxcon),
efra(ipart),efphi(ipart),hfra(ipart),hfphi(ipart),
psie(ipart),psieder(ipart),psim(ipart),psimder(ipart)

complex*16 worksp(maxcon),indx(maxcon)

real*8 sjunk l(ibesnum),sjunk2(ibesnum)

real*8 sbjr(ibesnum),sbji(ibesnum),sbyr(ibesnum),styi(ibesnum)

integer*4 ipivot(maxcon)

common/combes/nord,zkro,radii

common/mtrx/freq,zmu,zeps,numdi,sacc,dc

++ +

open(unit=11,file="a:zkztra.wvd',status='unknown") set up
open(unit=23,file="a:fldmag.wvd',status='unknown') :output files
open(unit=26,file="a:pwrin.wvd',status='unknown')
open(unit=29,file="a:psie.wvd',status='unknown")
open(unit=31,file="a:psim.wvd',status='unknown')
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itcont=0

mstp=0

iflagd=1

sguinc=0.0d0

write(*,*) 'enter frequency(Hz) and the number of dielectrics'
read(*,*) sfreq,numdi
freq=dcmplx(sfreq)*(2.0d0,0.0d0)*pi
write(*,*) ‘enter order'

read(*,*) nord

write(*,*) 'enter 3 kz guesses'
write(*,*) ' (middle guess,largest,smallest:recommended)’
read(*,*) zkz1

szkzre=dreal(zkz1;
szkzim=dimag(zkz1)

write(11,12) szkzre,szkzim

read(*,*) zkz2

szkzre=dreal(zkz2)
szkzim=dixag(zkz2)

write(11,12) szkzre,szkzim

read(*,*) zkz3

szkzre=dreal(zkz3)
szkzim=dimag(zkz3)

write(] 1,12) szkzre szkzim

write(*,*) 'desired accuracv?
read(*,*) sacc

do 10 i=1,numdi
write(*,*) ‘enter radius, mu, and epsilon’
read(*,*) sradii,zmu(i),zeps(i)
radii(i)=dcmplx(sradii)
zmu(i)=zmu(i)*zmu0
zeps(i)=zeps(i)*zepsO
10 contanue

write(*,*) 'Calculate Field Magnitudes? (1/0)'
read(*,*) magcal
»
* with 3 kz guesses, call subroutine mtrxval to calculate matrix elements
* and the value of the resulting determinant
*
call mtrxval(zkz1,det,iflagd)
ump 1 =det
call mtrxval(zkz2,det,iflagd)
ump2=det
call mtrxval(zkz3,det,iflagd)
ump3=det

*
* the 100 goto loop utilizes Muller's method to determine the kz value
*

100 itcont=itcont+1
umq=(zkz1-zkz2)/(zk22-2x23)
uma=umgq*ump !-umq*((1.0d0,0.0d0)+umq)*ump2+umq*umq*ump3
umb=((2.0d0,0.0d0)*umq+(1.0d0,0.0d0))*ump1-((1 .0d0,0.0d0)+umq)
+ *((1.0d0,0.0d0)+umq)*ump2+umq*umq*ump3




*

#*

200

305

umc=((1.0d0,0.0d0)+umq)*ump1
uradi=sqrt(umb*umb-(4.0d0,0.0d0)*uma*umc)

if (abs(umb+uradi).gt.abs(umb-uradi)) then
i=umb+ i
else ,
uradi=umb-uradi
endif

ump3=ump2
urnp2=umpl
zkz3=7kz2
zkz2=7kz1

calculate a new point and update last two points for quadratic fit

zkz1=2kz2-(zkz2-zk23)*(2.0d0,0.0d0)*umc/uradi
szkzre=dreal(zkz1)

szkzim=dimag(zkz1)

write(11,12) szkzre,szkzm

call murxval(zkz1,det,iflagd)

umpl=det

if kz varies less than the specified value, then end

if ((cdabs(zkz1-zkz2).1t.sacc)) then

write(*,*) 'finished'

write(*,*) 'kz=",zkz1

write(*,*) 'total number of iterations = ',itcont
write(*,*) 'determinant of matrix = ', det

do 200 i=1,numdi
if(abs(zkro(i)).1t.1.0d0) then
write(*,*) 'potential error : zkro small'
write(*,*) 'zkro('.1,")=',zkro(i)
endif
ite(*,*) 'zkro(',i,)=',zkro(i)
continue

write(* *) ‘finished’
mstp=1
endif
if(mstp) 100,100,300
continue
if(magcal)999,999,305

continue

maxnum=4*numdi-2
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call mrxval(zkz,det,0)
i
do 310 i=1,(maxnum-1) :shift matrix up
coeff(i)=-dc(i+1,1) :and to the left
310 continue :one clement
»*

do 315 i=1,maxnum
do 317 j=1,maxnum
de(ig)=dc(i+1j+1)
317 continue
315 continue
»*

* calculate field expansio:: coefficients

*
call ludr np(dc,maxnum-1,maxcon,indx,d)
call lubksb(dc,maxnum- 1, maxcon,indx,coeff)
write(*,*) 'the coefficients are:'

do 320 i=maxnum.2,-1
coeff(i)=coeff(i-1)
write(*,*) ‘coeff(’,i,") ,coeff(1)
320 connnue

coeff(1)=(1.040,0.0d0) :arbitrarily define
write(*,*) 'coeff( 1), coeff(1)
guidsp=radii(numdi)/dcmplix(ipari)

* calculate transverse E and H fields knowing the kz and coefficients

do 400 )=1,ipart
sguinc=sguinc+dreal(guidsp)

if(sguinc.lt.dreal(radii(1))) then
arg=zkro(1)*dcmplx(sguinc)

call zbesj(dreal(arg),dimag(arg),dble(nord),1,2.sbjr,sbji,
+ nz,ierr)
if(ierr.ne.0) write(*,*) Bessel Routine error #'ierr
call zbesy(dreal(arg),dimag(arg),dble(nord),1,2,sbyr,sbyi,
+ nzsjunkl,sjunk? ierr)
if(ierr.ne.0) write(*,*) 'Bessel Routine error #',ierr
bj=dcmplx(sbjr(1))+(0.0d0, 1.0d0)*dcmplx(sbji(1))
bjp1=dcmplx(sbjr(2))+(0.0d0,1.0d0)*dcmplx(sbji(2))
dbj=dcmplx(nord)*bj/arg-bjp1

efra(j)=-zkz1/(freq*zeps(1))*coeff(1)*zkro( 1)*dbj

+ -demplx(nord)/dcmplx(sguinc)*coeff(2)*bj
hfra(j)=-zkz1/(freq*zmu(1))*coeff(2)*zkro(1)*dbj

+ -demplx(nord)/dcmplx(sguinc)*coeff(1)*bj
efphi(j)=zkz 1 *dcmplx(nord)/(freq*zeps(1)*

+ demplx(sguirc))*coeff(1)*by+zkro(1)*coeff(2)*dbj

hfphi(j)=-zkz1*dcmplx(nord)/(freq*zmu(l)*
+ demplx(sguinc))*coeff(2)*bj-zkro(1)*coeff(1)*dbj




e

psim(j)=coeff(1)*bj
psimder(j)=coeff(1)*dbj
psie(j)=coeff(2)*bj
psieder(j)=coeff(2)*dbj

else

[

do 410 i=2,numdi

if(sguinc.ge.dreal(radii(i-1)).and.sguinc.le.
dreal(radii(i))) then
img=i

endif

continue
arg=zkro(irng)*dcmplx(sguinc)

call zbesj(dreal(arg),dimag(arg),dble(nord),1,2,sbjr,sbji,
nz,ierr)

if(ierr.ne.0) write(*,*) 'Bessel Routine error #'ierr

call zbesy(dreal(arg),dimag(arg),dble(nord), 1 ,2,sbyr,sbyi,

nz,sjunkl,sjunk?2.ierr)

if(ierr.ne.0) write(*,*) 'Bessel Routine error #'ierr

oj=dcmplx(sbjr(1))+(0.0d0,1.0d0)*dcmplx(sbji(1))

by=dcmplx(sbyr(1))+(0.0d0,1.0d0)*dcmplx( sbyi(1))

bjp 1=dcmpix(sbjr(2))+(0.0d0, 1 .0d0)*dcmplx(sbji(2))

bypl=dcmplx(sbyr(2))+(0.0d0,1 0d0)*dcmplx(sbyi(2))

dbj=dcmplx(nord)*bj/arg-bjp1

dby=dcmplx(nord)*by/arg-byp1

ii=4*img-5
efra(j)=-zkz1/(freq*zeps(img))*(coeff(ii)*
zkro(irng)*dbj+coeff(ii+1)*zkro(img)*dby)
cfra(j)=efra(j)-dcmplx(nord)/dcmplx(sguinc)*(coeff(ii+2)*
bj+coeff(ii+3)*by)
hfra(j)=-zkz1/(freq*zmu(img))*(coeff(ii+2)*
zkro(irng)*dbj+coeff(ii+3)*zkro(img)*dby)
hfra(j)=hfra(j)-demplx(nord)/dcmplx(sguinc)*(coeff(ii)*
bj+coeff(ii+1)*by)
efphi(j)=zkz1*dcmplx(nord)/(freq*zeps(img)*
dcmplx(sguinc))*(coeff(ii)*bj+coeff(ii+1)*by)
efphi(j)=efphi(j)+zkro(img)*(coeff(ii+2)*dbj+
coeff(ii+3)*dby)
hfphi(j)=-zkz1*dcmplx(nord)/(freq*zmu(irng)*
dcmplx(sguinc))*(cocff(ii+2)"bj+cocff(ii+3)" by)
hfphi(j)=hfphi(j)-zkro(img)*(coeff{(ii) *dbj+
coeff(ii+1)*dby)

psim(j)=coeff(ii)*bj+coeff(ii+1)*by

psimdcr(j)=cocff(ij)"'dbj+cocff(ii+l)"'dby

psie(j)=coeff{(ii+2)*bj+coeff(ii+3)*by

;&siifcdcr(j)=cocff(ii+2)*dbj+cocff(ii+3)"'dby
n

:calculate electric
:and magnetic
:scalar potentials

145




146

*
400 continue
*

sfdmax=0.0d0

*

* write out the E and H fields
*
do 420 i=1,ipart
sfdmax=max(abs(efra(i)),abs(hfra(i)),abs(efphi(i)),
+ abs(hfphi(i)),sfdmax)
420 continue
»*
sguinc=0.0d0
write(23,*) ' radius Ero(mag) Hro(mag) E phi
+ (mag) H phi (mag)

do 430 i=1,ipart
sguinc=sguinc+dreal(guidsp)
write(23,24) sguinc,abs(efra(i))/sfdmax,abs(hfra(i))/sfdmax,
+ abs(efphi(i))/sfdmax,abs(hfphi(i))/sfdmax

430 continue
*

sguinc=0.0d0
write(23,*) ' radius Erc(real) Hro(real) E phi
+ (real) H phi(real)’

do 431 i=1,ipant
sguinc=sguinc+dreal(guidsp)
write(23,24) sguinc,dreal(efra(i))/sfdmax,dreal(hfra(i))/
+ stdmax,dreal(efphi(i) )/sfdmax,dreal(hfphi(i))/
+ sfdmax
431 continue
*
sguinc=0.0d0
write(23,*) ' radius Ero(imag) Hro(imag) E phi
+(imag) H phi(imag)’

do 432 i=1,ipart
sguinc=sguinc+dreal(guidsp)
write(23,24) sguinc,dimag{efra(i))/sfdmax,dimag(hfra(i))/
+ sfdmax,dimag(efphi(i))/sfdmax,dimag(hfphi(i))/
+ sfdmax
432 continue
™

write(26,27) dreal(zkz1),dimag(zkz1),sfreq,nord,numdi

*

do 440 i=1,numdi
write(26,28) dreal(zeps(i)/zeps0),dreal(zmu(i)/zmu0),
+ dreal(radii(i))
write(26,28) dimag(zeps(i)/zeps0),dimag(zmu(i)/zmu0)
440 contnue
b 3

do 450 i=1,maxnum
write(26,28) dreal(coeff(i)),dimag(coeff(i))




450 continue
]

sguinc=0.0d0

* *

write out the electric and magnetic scalar potentials
do 460 i=1,ipart

sguinc=sguinc+dreal(guidsp)
write(29,24) sguinc,dreal(psie(i)).dimag(psie(i)),

+ dreal(psieder(i)),dimag(psieder(i))
write(31,24) sguinc,dreal(psim(i)),dimag(psim(i)),
+ dreal(psimder(i)),dimag(psimder(i))

460 continue

12 format(el2.5,5x,e12.5)
24 format(el2.5,4x,612.5,4x,e12.5,4x,e12.5,4x,e12.5)
27 format(el2.5,5x,e12.5,5x,e12.5,5x,i4,5x,i4)
28 format(el2.5,5x,e12.5,5x,e12.5)
999 close(31)
close(29)
close(26)
close(23)
close(11)
end

Subroutine mtrxval

mtrxval calculates the matrix elements for the multiple dielectric
circular waveguide main program.

input: zkz - axial wavenumber guess
iflag - = 1 for determinant calculation
= ( for no determinant
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output: det - determinant of matrix for kz guess

subroutine mtrxval(zkz,det,iflagd)
implicit complex*16(a-h,o-r,t-z)
implicit real*8(s)
parameter (spi=3.14159265359,maxdie=5,maxcon=maxdie*4-2)
parameter (zeps0=(8.£54d-12,0.0d0),zmu0=(12.56637062d-7,0.0d0))
parameter (ibesnum=4)
complex* 16 zkro(maxdie),radii(maxdie),zmu(maxdie),
+ zeps(maxdie),dc(maxcon,maxcon)
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complex*16 worksp(maxcon)

real*8 sjunk1(ibesnum),sjunk2(ibesnum)

real*8 sbjr(ibesnum),sbji(ibesnum),sbyr(ibesnum),sbyi(ibesnum)
integer*4 ipivot(maxcon)

common/combes/nord,zkro,radii
common/mtrx/freq,zmu,zeps,numdi,sacc,dc

do 1020 i=1,maxcon
do 1030 j=1,maxcon
dc(i,j)=(0.0d0,0.0d0)
1030 continue
1020 continue
*

(1)=sqrt(freq*freq*zmu(1)*zeps(1)-zkz*zkz)
ixl=1
ix2=1

do 1000 i=2,numdi
zkro(i)=sqrt(freq*freq*zmu(i) *zeps(i)-zkz*zkz) :principal value
arg=zkro(1)*radii(i-1)

=

* fcr the given zkz, the Bessel's functions and their derivatives are found
*
call totbes(i,arg,besj1,besj2,besnl,besn2,dbesjl,dbesj2,

+ dbesn1,dbesn2)
]
* calculate matrix elements. inner dielectric is a special case and is source
* of the if statements. ix1-row pointer, ix2-column pointer, i=outer dielectric
* of the two under observation.

*
dc(ix1,ix2)=zkro(i- 1)*zkro(i- 1)*zeps(i) *besjl

if(ix1.ne.1) then
dc(ix1,ix2+1)=zkro(i- 1)*zkro(i-1)*zeps(i)*besnl
1X2=ix2+2

endif

de(ix1,ix2+2)=-zkro(i)*zkro(i)*zeps(i- 1 ) *besj2

dc(ix1,ix2+3)=-zkro(i)*zkro(i)*zeps(i-1)*besn2
ixl=ix1+1

*

if(ix1.ne.2) then
ix2=ix2-2
de(ix 1,ix2+2)=zkro(i- 1)*zkro(i-1)*zmu(i)*bes;j1
dc(ix1,ix2+3)=zkro(i- 1 )*zkro(i- 1 *zmu(i)*besn1
dc(ix 1,ix2+6)=-zkro(i)*zkro(ij*zmu(i- 1) *besj2
ldc(ix 1,ix2+7)=-zkro(i)*zkro(i)*zmu(i- 1)*besn2
else
de(ix1,ix2+1)=zkro(i- 1 )*zkro(i- 1)*zmu(i) *bes;j1
de(ix1,ix2+4)=-zkro(i)*zkro(i)*zmu(i- 1) *bes;2
dcgix 1,ix2+5)=-zkro(i) *zkro(i)*zmu(i- 1 )*besn2
endi

ixl=ix1+1
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dc(ix 1,ix2)=zkz*dcmplx(nord)/(freq*zeps(i- 1)*radii(i- 1))*
besjl

if(ix1.eq.3) then
ix2=ix2-1
else
dc(ix1,ix2+1)=zkz*dcmpix(nord)/(freq*zeps(i-1)
*radii(i-1))*besnl
endif

dc(ix1,ix2+2)=zkro(i-1)*dbesjl

if(ix1.eq.3) then
ix2=ix2-1
else
dc(ix1,ix2+3)=zkro(i-1)*dbesn1
endif

dc(ix1,ix2+4)=-zkz*dcmplx(nord)/(freq*zeps(i) *radii(i- 1)) *
bes;j2

dc(ix1 .ix2+5)-—-zkz;gcmplx(nord)/(ﬂ'cq"’ zeps(i)*radii(i-1))*
bes

dc(ix1,ix2+6)=-zkro(i)*dbesj2
dc(ix1,ix2+7)=-zkro(i)*dbesn2

if(ix1.eq.3) then
ix2=1x2+2
endif

ixI=ix1+1
dc(ix1,ix2)=zkro(i-1)*dbes;j1

if(ixl.cq.4) then

2=ix2-1

else

dc(ix1,ix2+1)=zkro(i-1)*dbesn1
endif
dc(ix1,ix2+2)=zkz*dcmplx(nord)/(freq*zmu(i- 1 *radii(i- 1))*

besjl

if(ix1.eq.4) then

ix2=ix2-1
else

de(ix1,ix2+3)=zkz*dcmplx(nord)/(freq*zmu(i-1)
*radii(i-1))*besnl
endif

dc(ix1,ix2+4)=-zkro(i)*dbes;j2
dc(ix1,ix2+5)=-zkro(i) *dbesn2
de(ix1 ,ix2+6)=-zt.)kéz’."2dcmplx(nord)/(frcq* zmu(i)*radii(i-1))*

S)
de(ix1 ,ix2+7)=-il;z:'écmplx(nord)/(frcq*zmu(i)"’radii(i— 1))*
S




*

1000

*

* for last two rows calculate elements. zbesj(y) is Bessel's routine with no

if (ix1.eq.4) then
ix2=ix2+2
endif

ixl=ix1+1
if(ix1.eq.5) then
ix2=ix2+2
else
ix2=ix2+4
endif

continue

arg=zkro(numdi)*radii(numcdi)

* derviatives. last two rows due to PEC guiding structure.

*

+

call zbesj(dreal(arg),dimag(arg),dble(nord),1,2,sbjr,sbji,
nz,ierr)

if(ierr.ne.0) write(*,*) '‘Bessel Routine error #'ierr

call zbesy(dreal(arg),dimag(arg),dble(nord),1,2,sbyr,sbyi,

+ nz,sjunkl,sjunk2,ierr)

]

if(ierr.ne.0) write(*,*) '‘Bessel Routine error # ierr
besj2=dcmplx(sbjr(1))+(0.0d0,1.0d0)*dcmplx(sbji(1))
besn2=dcmplx(sbyr(1))+(0.0d0,1.0d0)*dcmplx(sbyi(1))
bes;j2p 1=dcmplx(sbjr(2))+(0.0d0,1.0d0)*dcmplx(sbji(2))
besn2p1=dcmplx(sbyr(2))+(0.0d0,1.0d0)*dcmplx(sbyi(2))
dbesj2=dcmplx(nord)*besj2/arg-besj2pl
dbesn2=dcmplx(nord)*besn2/arg-besn2pl
maxnum=numxi*4-2

dc(ix1,maxnum-3)=bes;j2

dc(ix 1, maxnum-2)=besn2

ixl=ix1+1

dc(ix1,maxnum-1)=dbesj2

dc(ix1,maxnum)=dbesn2

nc=numdi*4-2

* with matrix calculated, now call determinant routine.

»*
*

2030
&

»*

2020

if (iflagd) 2020,2020,2030
continue

call detl(dc,nc,det)
continue

return
end
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Subroutine totbes

totbes calculates the Bessel functions of the first and second kinds
and the corresponding derivatives for complex arguments.

'g
©=
-~

: 1- loop counter (outer dielectric of the two under scrutiny)
arg - argument of Bessel functions

output: besjl,besj2 - Bessel functions of the first kind

1-inner dielectric of the boundary

2-outer dielectric of the boundary
besnl,besn2 - Bessel functions of the second kind
dbesjl,dbes;j2 - derivative of the Bessel function of the

first kind
dbesn1,dbesn2 - derivative of the Bessel function of the
second kind
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subroutine totbes(i,arg,besj1,besj2,besn1,besn2,dbes;jl,
+ dbesj2,dbesn],dbesn2)

implicit complex*16(a-h,o-r,t-z)

implicit real*8(s)

parameter (pi=(3.14159265359d0,0.0d0),maxdie=5,maxcon=maxdie*4-2)
parameter (ibesnum=4)

complex*16 zkro(maxdie),radii(maxdie)

real*8 sjunk1(ibesnum),sjunk2(ibesnum)

real*8 sbjr(ibesnum),sbji(ibesnum),sbyr(ibesnum),sbyi(ibesnum)
common/combes/nord,zkro,radii

*

* with the argument and the order, call the Bessel function subroutine
*

call zbesj(dreal(arg),dimag(arg),dble(nord), 1,2,sbjr,sbji,
+ nz,ierr)
if(ierr.ne.0) write(*,*) Bessel Routine error #'ierr
call zbesy(dreal(arg),dimag(arg),dble(nord),1,2,sbyr,sbyi,
+ nz,sjunkl,sjunk? ierr)
if(ierr.ne.0) write(*,*) 'Bessel Routine error #',ierr
besj2=dcmplx(sbjr(1))+(0.0d0,1.0d0)*dcmplx(sbji(1))
besn2=dcmplx(sbyr(1))+(0.0d0,1.0d0)*dcmplx(sbyi(1))
besj2p 1=demplx(sbjr(2))+(0.0d0,1.0d0)*dcmplx(sbji(2))
besn2p 1=dcmplx(sbyr(2))+(0.0d0,1.0d0)*dcmplx(sbyi(2))
dbesj2=dcmplx(nord)*besj2/arg-besj2p1
dbesn2=dcmplx(nord)*besn2/arg-besn2pl
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calculate Bessel functions and derivatives for the inner dielectric
of the boundary under consideration

arg=zkro(i- 1)*radii(i-1)

call zbesj(dreal(arg),dimag(arg),dble(nord),1,2,sbjr,sbji,
+ nz,ierr)
if(ierr.ne.0) write(*,*) 'Bessel Routine error #'ierr
call zbesy(dreal(arg),dimag(arg),dble(nord),1,2,sbyr,sbyi,
+ nz,sjunkl,sjunk2.ierr)
if(ierr.ne.0) write(*,*) '‘Bessel Routine error #,iemr
besj1=dcmplx(sbjr(1))+(0.0d0,1.0d0)*dcmplx(sbji(1))
besn 1=dcmpix(sbyr(1))+(0.0d0,1.0d0)*dcmplx(sbyi(l))
besj1p1=dcmplx(sbjr(2))+(0.0d0,1.0d0)*dcmplx(sbji(2))
besn1pl=dcmplx(sbyr(2))+(0.0dC,1.0d0)*dcmplx(sbyi(2))
dbesjl=dcmplx(nord)*bes;jl/arg-besjlp]l
dbesnl=dcmplx(nord)*besnl/arg-besnipl

* ¥ * #

*

return
end

* e semmcesamcsesmenercasemmm—aes cemmmcemeceamamaan

*

* Subroutine detl
»*

* detl calculates the determinant of a double precision complex
* matrix using lu decomposition. reference "Numerical Recipes."

input: a - square matrix under evaluation
n - size of square matrix

output: d - determinant (complex, double precision)

* # ¥ % % # #

*

............ ———- v anv—-

* *

subroutine detl(a,n,d)

implicit complex*16(a-h,0-z)
parameter(maxdie=5,maxcon=maxdie*4-2,np=maxcon)
complex*16 a(np,np),indx(np)

call ludcmp(a,n,np,indx,d)

do 11 i=1,n
d=d*a(i,i)
11 contnue

return
end




¥ * # *

*

* Subroutine ludcmp

*x

* ludemp performs the LU decomposition of the matrix [dc] to be used in
* conjunction with the root-finding routine in searching for kz, or

* in conjunction with lubksb to calculate coefficients [C].

* reference "Numerical Recipes.”
*

*

* input: a - square matrix under evaluation
n - size of square matrix

np - dimension of matrix

output: indx - row permutations for partial pivoting
d - even or odd number of row interchanges

.......

* % # ¥ ¥ # ¥ ¥ ¥ ¥

subroutine 'udcmp(a,n,np,indx,d)
implicit complex*16(a-h,0-z)
parameter(nmax=100)

wompiex*16 a(np,np),indx(np),vv(nmax)
tiny=(1.0d-40,1.0d-40)

d=(1.0d40,0.040)

do 12i=1,n
aamax=(0.0d0,0.0d0)

do 11 j=i,n
if (cdabs(a(i,))).gt.cdabs(aamax)) aamax=abs(a(i,j))
11 continue

if (aamax.eq.0.) pause 'singular matrix'’
vv(i)=(1.0d0,0.0d0)/aamax
12 continue

do 19 j=1,n

do 14 i=1j-1
sum=a(i,j)

do 13 k=1,i-1
sum=sum-a(i,k)*a(k,j)
13 continue

a(i,j)=sum
14 continue
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15

16

17

18

19

*

*

aamax=(0.0d0,0.0d0)

do 16 i=j,n
sum=a(i,j)

do 15 k=1-1
sum=sum-a(i,k)*a(k,j)
continue

a(i,j)=sum
dum=vv(i)*abs(sum)
if(cdabs(dum).ge.cdabs(aamax)) then
imax=i
aamax=dum
endif
continue

if (j.ne.imax) then

do 17 k=1,n
dum=a(imax,k)
a(imax,k)=a(j,k)
a(j,k)=dum
continue

ca
indx(j)=imax '
if(a(,j).eq.0.) a@,j)=tiny
if(j.ne.n) then
dum=(1.0d0,0.0d0)/a(,j)

do 18 i=j+1,n
a(i,j)=a(i,j)*dum
continue

endif
continue

return
end

* Subroutine lubksb

*

* lubksb calculates the backsubstitution in conjuction with ludemp

* to calculate the coefficients [C|. reference "Numerical Recipes."
»
®
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input: a - square matrix under evaluation

n - size of square matrix
np - dimension of matrix

output: indx - row permutations for partial pivoting

b - right-hand side of the matrix equation Ax=b

[ K K B B K B B B 2

630

620

subroutine lubksb(a,n,np,indx,b)
implicit complex*16(a-h,0-z)
gomplcx* 16 a(np,np),indx(np),b(np)
il

do 600 i=1,n
=indx(i)
sum=>b(ll)
b(1)=b(i)

if (ii.ne.0) then
do 610 j=ii,i-1

sum=sum-a(i,j)*b()
continue

elsg 1f (sum.ne.0.) then
ii=i
endif
b(i)=sum
continue
do 620 i=n,1,-1
sum=b(i)
if (i.lt.n) then
do 630 j=i+1,n
sum=sum-a(i,j)*b(j)
continue

endif
b(i)=sum/a(i,i)

continue

return
end
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